Port liballoc to get proper kmalloc/kcalloc/krealloc/kfree functions.

Yes, that's not completely-from-scratch.
But let's be honest, am I going to do everything from scratch? Probably not. I'm not making my own bootloader.
And making a proper smaller-than-4-KB allocator is not something I want to do.
Plus, liballoc works perfectly in this rewrite, seeing as the MM code actually works, instead of leaking all your poor memory
And liballoc_{lock, unlock} can be actually defined, since we have spinlocks here!
This commit is contained in:
apio 2022-09-24 22:40:59 +02:00
parent 2511b7d7a1
commit 6bd3529f32
5 changed files with 867 additions and 1 deletions

View File

@ -0,0 +1,75 @@
#ifndef _LIBALLOC_H
#define _LIBALLOC_H
#include <stddef.h>
/** \defgroup ALLOCHOOKS liballoc hooks
*
* These are the OS specific functions which need to
* be implemented on any platform that the library
* is expected to work on.
*/
/** @{ */
// If we are told to not define our own size_t, then we skip the define.
//#define _HAVE_UINTPTR_T
// typedef unsigned long uintptr_t;
// This lets you prefix malloc and friends
#define PREFIX(func) k##func
#ifdef __cplusplus
extern "C"
{
#endif
#ifndef __skip_bindings
/** This function is supposed to lock the memory data structures. It
* could be as simple as disabling interrupts or acquiring a spinlock.
* It's up to you to decide.
*
* \return 0 if the lock was acquired successfully. Anything else is
* failure.
*/
extern int liballoc_lock();
/** This function unlocks what was previously locked by the liballoc_lock
* function. If it disabled interrupts, it enables interrupts. If it
* had acquiried a spinlock, it releases the spinlock. etc.
*
* \return 0 if the lock was successfully released.
*/
extern int liballoc_unlock();
/** This is the hook into the local system which allocates pages. It
* accepts an integer parameter which is the number of pages
* required. The page size was set up in the liballoc_init function.
*
* \return NULL if the pages were not allocated.
* \return A pointer to the allocated memory.
*/
extern void* liballoc_alloc(size_t);
/** This frees previously allocated memory. The void* parameter passed
* to the function is the exact same value returned from a previous
* liballoc_alloc call.
*
* The integer value is the number of pages to free.
*
* \return 0 if the memory was successfully freed.
*/
extern int liballoc_free(void*, size_t);
#endif
extern void* PREFIX(malloc)(size_t); ///< The standard function.
extern void* PREFIX(realloc)(void*, size_t); ///< The standard function.
extern void* PREFIX(calloc)(size_t, size_t); ///< The standard function.
extern void PREFIX(free)(void*); ///< The standard function.
#ifdef __cplusplus
}
#endif
/** @} */
#endif

View File

@ -7,4 +7,8 @@ char* utoa(uint32_t number, char* arr, int base);
char* ltoa(int64_t number, char* arr, int base);
char* ultoa(uint64_t number, char* arr, int base);
void sleep(uint64_t ms);
void sleep(uint64_t ms);
#define __skip_bindings
#include "memory/liballoc/liballoc.h"
#undef __skip_bindings

View File

@ -143,5 +143,21 @@ extern "C" void _start()
kdbgln(" Used memory : %ld KB", PMM::get_used() / 1024);
kdbgln(" Reserved memory : %ld KB", PMM::get_reserved() / 1024);
uint64_t* hello = (uint64_t*)kmalloc(8);
*hello = (uint64_t)-1;
kinfoln("*hello is %lx", *hello);
kdbgln("System memory: %ld KB", Memory::get_system() / 1024);
kdbgln(" Free memory : %ld KB", PMM::get_free() / 1024);
kdbgln(" Used memory : %ld KB", PMM::get_used() / 1024);
kdbgln(" Reserved memory : %ld KB", PMM::get_reserved() / 1024);
kfree(hello);
kdbgln("System memory: %ld KB", Memory::get_system() / 1024);
kdbgln(" Free memory : %ld KB", PMM::get_free() / 1024);
kdbgln(" Used memory : %ld KB", PMM::get_used() / 1024);
kdbgln(" Reserved memory : %ld KB", PMM::get_reserved() / 1024);
Scheduler::exit();
}

View File

@ -0,0 +1,30 @@
#include "memory/MemoryManager.h"
#include "thread/Spinlock.h"
#include <stddef.h>
Spinlock alloc_lock;
extern "C" int liballoc_lock()
{
alloc_lock.acquire();
return !alloc_lock.locked(); // Sanity check: the spinlock should be locked (return 0)
}
extern "C" int liballoc_unlock()
{
alloc_lock.release();
return 0; // No sanity check this time because another thread could have acquired the lock the instant we let go of
// it.
}
extern "C" void* liballoc_alloc(size_t count)
{
return MemoryManager::get_pages(count);
}
extern "C" int liballoc_free(void* addr, size_t count)
{
MemoryManager::release_pages(addr, count);
return 0;
}

View File

@ -0,0 +1,741 @@
#include "memory/liballoc/liballoc.h"
#include <stdint.h>
/** Durand's Amazing Super Duper Memory functions. */
#define VERSION "1.1"
#define ALIGNMENT \
16ul // 4ul ///< This is the byte alignment that memory must be allocated on. IMPORTANT for GTK and
// other stuff.
#define ALIGN_TYPE char /// unsigned char[16] /// unsigned short
#define ALIGN_INFO \
sizeof(ALIGN_TYPE) * 16 ///< Alignment information is stored right before the pointer. This is the number of bytes
///< of information stored there.
#define USE_CASE1
#define USE_CASE2
#define USE_CASE3
#define USE_CASE4
#define USE_CASE5
/** This macro will conveniently align our pointer upwards */
#define ALIGN(ptr) \
if (ALIGNMENT > 1) \
{ \
uintptr_t diff; \
ptr = (void*)((uintptr_t)ptr + ALIGN_INFO); \
diff = (uintptr_t)ptr & (ALIGNMENT - 1); \
if (diff != 0) \
{ \
diff = ALIGNMENT - diff; \
ptr = (void*)((uintptr_t)ptr + diff); \
} \
*((ALIGN_TYPE*)((uintptr_t)ptr - ALIGN_INFO)) = diff + ALIGN_INFO; \
}
#define UNALIGN(ptr) \
if (ALIGNMENT > 1) \
{ \
uintptr_t diff = *((ALIGN_TYPE*)((uintptr_t)ptr - ALIGN_INFO)); \
if (diff < (ALIGNMENT + ALIGN_INFO)) { ptr = (void*)((uintptr_t)ptr - diff); } \
}
#define LIBALLOC_MAGIC 0xc001c0de
#define LIBALLOC_DEAD 0xdeaddead
#if defined DEBUG || defined INFO
#include <stdio.h>
#include <stdlib.h>
#define FLUSH()
#endif
/** A structure found at the top of all system allocated
* memory blocks. It details the usage of the memory block.
*/
struct liballoc_major
{
struct liballoc_major* prev; ///< Linked list information.
struct liballoc_major* next; ///< Linked list information.
unsigned int pages; ///< The number of pages in the block.
unsigned int size; ///< The number of pages in the block.
unsigned int usage; ///< The number of bytes used in the block.
struct liballoc_minor* first; ///< A pointer to the first allocated memory in the block.
};
/** This is a structure found at the beginning of all
* sections in a major block which were allocated by a
* malloc, calloc, realloc call.
*/
struct liballoc_minor
{
struct liballoc_minor* prev; ///< Linked list information.
struct liballoc_minor* next; ///< Linked list information.
struct liballoc_major* block; ///< The owning block. A pointer to the major structure.
unsigned int magic; ///< A magic number to idenfity correctness.
unsigned int size; ///< The size of the memory allocated. Could be 1 byte or more.
unsigned int req_size; ///< The size of memory requested.
};
static struct liballoc_major* l_memRoot = NULL; ///< The root memory block acquired from the system.
static struct liballoc_major* l_bestBet = NULL; ///< The major with the most free memory.
static unsigned int l_pageSize = 4096; ///< The size of an individual page. Set up in liballoc_init.
static unsigned int l_pageCount = 16; ///< The number of pages to request per chunk. Set up in liballoc_init.
static unsigned long long l_allocated = 0; ///< Running total of allocated memory.
static unsigned long long l_inuse = 0; ///< Running total of used memory.
static long long l_warningCount = 0; ///< Number of warnings encountered
static long long l_errorCount = 0; ///< Number of actual errors
static long long l_possibleOverruns = 0; ///< Number of possible overruns
// *********** HELPER FUNCTIONS *******************************
static void* liballoc_memset(void* s, int c, size_t n)
{
unsigned int i;
for (i = 0; i < n; i++) ((char*)s)[i] = c;
return s;
}
static void* liballoc_memcpy(void* s1, const void* s2, size_t n)
{
char* cdest;
char* csrc;
unsigned int* ldest = (unsigned int*)s1;
unsigned int* lsrc = (unsigned int*)s2;
while (n >= sizeof(unsigned int))
{
*ldest++ = *lsrc++;
n -= sizeof(unsigned int);
}
cdest = (char*)ldest;
csrc = (char*)lsrc;
while (n > 0)
{
*cdest++ = *csrc++;
n -= 1;
}
return s1;
}
#if defined DEBUG || defined INFO
static void liballoc_dump()
{
#ifdef DEBUG
struct liballoc_major* maj = l_memRoot;
struct liballoc_minor* min = NULL;
#endif
printf("liballoc: ------ Memory data ---------------\n");
printf("liballoc: System memory allocated: %i bytes\n", l_allocated);
printf("liballoc: Memory in used (malloc'ed): %i bytes\n", l_inuse);
printf("liballoc: Warning count: %i\n", l_warningCount);
printf("liballoc: Error count: %i\n", l_errorCount);
printf("liballoc: Possible overruns: %i\n", l_possibleOverruns);
#ifdef DEBUG
while (maj != NULL)
{
printf("liballoc: %x: total = %i, used = %i\n", maj, maj->size, maj->usage);
min = maj->first;
while (min != NULL)
{
printf("liballoc: %x: %i bytes\n", min, min->size);
min = min->next;
}
maj = maj->next;
}
#endif
FLUSH();
}
#endif
// ***************************************************************
static struct liballoc_major* allocate_new_page(unsigned int size)
{
unsigned int st;
struct liballoc_major* maj;
// This is how much space is required.
st = size + sizeof(struct liballoc_major);
st += sizeof(struct liballoc_minor);
// Perfect amount of space?
if ((st % l_pageSize) == 0) st = st / (l_pageSize);
else
st = st / (l_pageSize) + 1;
// No, add the buffer.
// Make sure it's >= the minimum size.
if (st < l_pageCount) st = l_pageCount;
maj = (struct liballoc_major*)liballoc_alloc(st);
if (maj == NULL)
{
l_warningCount += 1;
#if defined DEBUG || defined INFO
printf("liballoc: WARNING: liballoc_alloc( %i ) return NULL\n", st);
FLUSH();
#endif
return NULL; // uh oh, we ran out of memory.
}
maj->prev = NULL;
maj->next = NULL;
maj->pages = st;
maj->size = st * l_pageSize;
maj->usage = sizeof(struct liballoc_major);
maj->first = NULL;
l_allocated += maj->size;
#ifdef DEBUG
printf("liballoc: Resource allocated %x of %i pages (%i bytes) for %i size.\n", maj, st, maj->size, size);
printf("liballoc: Total memory usage = %i KB\n", (int)((l_allocated / (1024))));
FLUSH();
#endif
return maj;
}
void* PREFIX(malloc)(size_t req_size)
{
int startedBet = 0;
unsigned long long bestSize = 0;
void* p = NULL;
uintptr_t diff;
struct liballoc_major* maj;
struct liballoc_minor* min;
struct liballoc_minor* new_min;
unsigned long size = req_size;
// For alignment, we adjust size so there's enough space to align.
if (ALIGNMENT > 1) { size += ALIGNMENT + ALIGN_INFO; }
// So, ideally, we really want an alignment of 0 or 1 in order
// to save space.
liballoc_lock();
if (size == 0)
{
l_warningCount += 1;
#if defined DEBUG || defined INFO
printf("liballoc: WARNING: alloc( 0 ) called from %x\n", __builtin_return_address(0));
FLUSH();
#endif
liballoc_unlock();
return PREFIX(malloc)(1);
}
if (l_memRoot == NULL)
{
#if defined DEBUG || defined INFO
#ifdef DEBUG
printf("liballoc: initialization of liballoc " VERSION "\n");
#endif
atexit(liballoc_dump);
FLUSH();
#endif
// This is the first time we are being used.
l_memRoot = allocate_new_page(size);
if (l_memRoot == NULL)
{
liballoc_unlock();
#ifdef DEBUG
printf("liballoc: initial l_memRoot initialization failed\n", p);
FLUSH();
#endif
return NULL;
}
#ifdef DEBUG
printf("liballoc: set up first memory major %x\n", l_memRoot);
FLUSH();
#endif
}
#ifdef DEBUG
printf("liballoc: %x PREFIX(malloc)( %i ): ", __builtin_return_address(0), size);
FLUSH();
#endif
// Now we need to bounce through every major and find enough space....
maj = l_memRoot;
startedBet = 0;
// Start at the best bet....
if (l_bestBet != NULL)
{
bestSize = l_bestBet->size - l_bestBet->usage;
if (bestSize > (size + sizeof(struct liballoc_minor)))
{
maj = l_bestBet;
startedBet = 1;
}
}
while (maj != NULL)
{
diff = maj->size - maj->usage;
// free memory in the block
if (bestSize < diff)
{
// Hmm.. this one has more memory then our bestBet. Remember!
l_bestBet = maj;
bestSize = diff;
}
#ifdef USE_CASE1
// CASE 1: There is not enough space in this major block.
if (diff < (size + sizeof(struct liballoc_minor)))
{
#ifdef DEBUG
printf("CASE 1: Insufficient space in block %x\n", maj);
FLUSH();
#endif
// Another major block next to this one?
if (maj->next != NULL)
{
maj = maj->next; // Hop to that one.
continue;
}
if (startedBet == 1) // If we started at the best bet,
{ // let's start all over again.
maj = l_memRoot;
startedBet = 0;
continue;
}
// Create a new major block next to this one and...
maj->next = allocate_new_page(size); // next one will be okay.
if (maj->next == NULL) break; // no more memory.
maj->next->prev = maj;
maj = maj->next;
// .. fall through to CASE 2 ..
}
#endif
#ifdef USE_CASE2
// CASE 2: It's a brand new block.
if (maj->first == NULL)
{
maj->first = (struct liballoc_minor*)((uintptr_t)maj + sizeof(struct liballoc_major));
maj->first->magic = LIBALLOC_MAGIC;
maj->first->prev = NULL;
maj->first->next = NULL;
maj->first->block = maj;
maj->first->size = size;
maj->first->req_size = req_size;
maj->usage += size + sizeof(struct liballoc_minor);
l_inuse += size;
p = (void*)((uintptr_t)(maj->first) + sizeof(struct liballoc_minor));
ALIGN(p);
#ifdef DEBUG
printf("CASE 2: returning %x\n", p);
FLUSH();
#endif
liballoc_unlock(); // release the lock
return p;
}
#endif
#ifdef USE_CASE3
// CASE 3: Block in use and enough space at the start of the block.
diff = (uintptr_t)(maj->first);
diff -= (uintptr_t)maj;
diff -= sizeof(struct liballoc_major);
if (diff >= (size + sizeof(struct liballoc_minor)))
{
// Yes, space in front. Squeeze in.
maj->first->prev = (struct liballoc_minor*)((uintptr_t)maj + sizeof(struct liballoc_major));
maj->first->prev->next = maj->first;
maj->first = maj->first->prev;
maj->first->magic = LIBALLOC_MAGIC;
maj->first->prev = NULL;
maj->first->block = maj;
maj->first->size = size;
maj->first->req_size = req_size;
maj->usage += size + sizeof(struct liballoc_minor);
l_inuse += size;
p = (void*)((uintptr_t)(maj->first) + sizeof(struct liballoc_minor));
ALIGN(p);
#ifdef DEBUG
printf("CASE 3: returning %x\n", p);
FLUSH();
#endif
liballoc_unlock(); // release the lock
return p;
}
#endif
#ifdef USE_CASE4
// CASE 4: There is enough space in this block. But is it contiguous?
min = maj->first;
// Looping within the block now...
while (min != NULL)
{
// CASE 4.1: End of minors in a block. Space from last and end?
if (min->next == NULL)
{
// the rest of this block is free... is it big enough?
diff = (uintptr_t)(maj) + maj->size;
diff -= (uintptr_t)min;
diff -= sizeof(struct liballoc_minor);
diff -= min->size;
// minus already existing usage..
if (diff >= (size + sizeof(struct liballoc_minor)))
{
// yay....
min->next = (struct liballoc_minor*)((uintptr_t)min + sizeof(struct liballoc_minor) + min->size);
min->next->prev = min;
min = min->next;
min->next = NULL;
min->magic = LIBALLOC_MAGIC;
min->block = maj;
min->size = size;
min->req_size = req_size;
maj->usage += size + sizeof(struct liballoc_minor);
l_inuse += size;
p = (void*)((uintptr_t)min + sizeof(struct liballoc_minor));
ALIGN(p);
#ifdef DEBUG
printf("CASE 4.1: returning %x\n", p);
FLUSH();
#endif
liballoc_unlock(); // release the lock
return p;
}
}
// CASE 4.2: Is there space between two minors?
if (min->next != NULL)
{
// is the difference between here and next big enough?
diff = (uintptr_t)(min->next);
diff -= (uintptr_t)min;
diff -= sizeof(struct liballoc_minor);
diff -= min->size;
// minus our existing usage.
if (diff >= (size + sizeof(struct liballoc_minor)))
{
// yay......
new_min = (struct liballoc_minor*)((uintptr_t)min + sizeof(struct liballoc_minor) + min->size);
new_min->magic = LIBALLOC_MAGIC;
new_min->next = min->next;
new_min->prev = min;
new_min->size = size;
new_min->req_size = req_size;
new_min->block = maj;
min->next->prev = new_min;
min->next = new_min;
maj->usage += size + sizeof(struct liballoc_minor);
l_inuse += size;
p = (void*)((uintptr_t)new_min + sizeof(struct liballoc_minor));
ALIGN(p);
#ifdef DEBUG
printf("CASE 4.2: returning %x\n", p);
FLUSH();
#endif
liballoc_unlock(); // release the lock
return p;
}
} // min->next != NULL
min = min->next;
} // while min != NULL ...
#endif
#ifdef USE_CASE5
// CASE 5: Block full! Ensure next block and loop.
if (maj->next == NULL)
{
#ifdef DEBUG
printf("CASE 5: block full\n");
FLUSH();
#endif
if (startedBet == 1)
{
maj = l_memRoot;
startedBet = 0;
continue;
}
// we've run out. we need more...
maj->next = allocate_new_page(size); // next one guaranteed to be okay
if (maj->next == NULL) break; // uh oh, no more memory.....
maj->next->prev = maj;
}
#endif
maj = maj->next;
} // while (maj != NULL)
liballoc_unlock(); // release the lock
#ifdef DEBUG
printf("All cases exhausted. No memory available.\n");
FLUSH();
#endif
#if defined DEBUG || defined INFO
printf("liballoc: WARNING: PREFIX(malloc)( %i ) returning NULL.\n", size);
liballoc_dump();
FLUSH();
#endif
return NULL;
}
void PREFIX(free)(void* ptr)
{
struct liballoc_minor* min;
struct liballoc_major* maj;
if (ptr == NULL)
{
l_warningCount += 1;
#if defined DEBUG || defined INFO
printf("liballoc: WARNING: PREFIX(free)( NULL ) called from %x\n", __builtin_return_address(0));
FLUSH();
#endif
return;
}
UNALIGN(ptr);
liballoc_lock(); // lockit
min = (struct liballoc_minor*)((uintptr_t)ptr - sizeof(struct liballoc_minor));
if (min->magic != LIBALLOC_MAGIC)
{
l_errorCount += 1;
// Check for overrun errors. For all bytes of LIBALLOC_MAGIC
if (((min->magic & 0xFFFFFF) == (LIBALLOC_MAGIC & 0xFFFFFF)) ||
((min->magic & 0xFFFF) == (LIBALLOC_MAGIC & 0xFFFF)) || ((min->magic & 0xFF) == (LIBALLOC_MAGIC & 0xFF)))
{
l_possibleOverruns += 1;
#if defined DEBUG || defined INFO
printf("liballoc: ERROR: Possible 1-3 byte overrun for magic %x != %x\n", min->magic, LIBALLOC_MAGIC);
FLUSH();
#endif
}
if (min->magic == LIBALLOC_DEAD)
{
#if defined DEBUG || defined INFO
printf("liballoc: ERROR: multiple PREFIX(free)() attempt on %x from %x.\n", ptr,
__builtin_return_address(0));
FLUSH();
#endif
}
else
{
#if defined DEBUG || defined INFO
printf("liballoc: ERROR: Bad PREFIX(free)( %x ) called from %x\n", ptr, __builtin_return_address(0));
FLUSH();
#endif
}
// being lied to...
liballoc_unlock(); // release the lock
return;
}
#ifdef DEBUG
printf("liballoc: %x PREFIX(free)( %x ): ", __builtin_return_address(0), ptr);
FLUSH();
#endif
maj = min->block;
l_inuse -= min->size;
maj->usage -= (min->size + sizeof(struct liballoc_minor));
min->magic = LIBALLOC_DEAD; // No mojo.
if (min->next != NULL) min->next->prev = min->prev;
if (min->prev != NULL) min->prev->next = min->next;
if (min->prev == NULL) maj->first = min->next;
// Might empty the block. This was the first
// minor.
// We need to clean up after the majors now....
if (maj->first == NULL) // Block completely unused.
{
if (l_memRoot == maj) l_memRoot = maj->next;
if (l_bestBet == maj) l_bestBet = NULL;
if (maj->prev != NULL) maj->prev->next = maj->next;
if (maj->next != NULL) maj->next->prev = maj->prev;
l_allocated -= maj->size;
liballoc_free(maj, maj->pages);
}
else
{
if (l_bestBet != NULL)
{
int bestSize = l_bestBet->size - l_bestBet->usage;
int majSize = maj->size - maj->usage;
if (majSize > bestSize) l_bestBet = maj;
}
}
#ifdef DEBUG
printf("OK\n");
FLUSH();
#endif
liballoc_unlock(); // release the lock
}
void* PREFIX(calloc)(size_t nobj, size_t size)
{
int real_size;
void* p;
real_size = nobj * size;
p = PREFIX(malloc)(real_size);
liballoc_memset(p, 0, real_size);
return p;
}
void* PREFIX(realloc)(void* p, size_t size)
{
void* ptr;
struct liballoc_minor* min;
unsigned int real_size;
// Honour the case of size == 0 => free old and return NULL
if (size == 0)
{
PREFIX(free)(p);
return NULL;
}
// In the case of a NULL pointer, return a simple malloc.
if (p == NULL) return PREFIX(malloc)(size);
// Unalign the pointer if required.
ptr = p;
UNALIGN(ptr);
liballoc_lock(); // lockit
min = (struct liballoc_minor*)((uintptr_t)ptr - sizeof(struct liballoc_minor));
// Ensure it is a valid structure.
if (min->magic != LIBALLOC_MAGIC)
{
l_errorCount += 1;
// Check for overrun errors. For all bytes of LIBALLOC_MAGIC
if (((min->magic & 0xFFFFFF) == (LIBALLOC_MAGIC & 0xFFFFFF)) ||
((min->magic & 0xFFFF) == (LIBALLOC_MAGIC & 0xFFFF)) || ((min->magic & 0xFF) == (LIBALLOC_MAGIC & 0xFF)))
{
l_possibleOverruns += 1;
#if defined DEBUG || defined INFO
printf("liballoc: ERROR: Possible 1-3 byte overrun for magic %x != %x\n", min->magic, LIBALLOC_MAGIC);
FLUSH();
#endif
}
if (min->magic == LIBALLOC_DEAD)
{
#if defined DEBUG || defined INFO
printf("liballoc: ERROR: multiple PREFIX(free)() attempt on %x from %x.\n", ptr,
__builtin_return_address(0));
FLUSH();
#endif
}
else
{
#if defined DEBUG || defined INFO
printf("liballoc: ERROR: Bad PREFIX(free)( %x ) called from %x\n", ptr, __builtin_return_address(0));
FLUSH();
#endif
}
// being lied to...
liballoc_unlock(); // release the lock
return NULL;
}
// Definitely a memory block.
real_size = min->req_size;
if (real_size >= size)
{
min->req_size = size;
liballoc_unlock();
return p;
}
liballoc_unlock();
// If we got here then we're reallocating to a block bigger than us.
ptr = PREFIX(malloc)(size); // We need to allocate new memory
liballoc_memcpy(ptr, p, real_size);
PREFIX(free)(p);
return ptr;
}