This involves renaming the descriptor_from_fd function to the more appropriately named
open_descriptor_from_fd (since we check if the descriptor was opened and error out otherwise),
and creating a new function that does not verify that the file descriptor was opened.
We were previously looking at its segment registers to see if they were user-like, but this method is bad.
What is the task was executing a system call?
So now, we store that value at creation time.
Kernel: Implement a descriptor struct which stores the opened node and read offset, and give each task 8 of those.
Implement three syscalls: sys_read, sys_open and sys_close (sys_write still writes to the console instead of using a fd, for now)
Implement three new errors: ENOENT, EBADF and EMFILE.
libc: Implement the new errors, and the new syscalls in syscall().
Also fix _RETURN_WITH_ERRNO() to set errno correctly, which was making strerror() return null, thus crashing perror().
userspace: make init demonstrate the new file API.
The exit() libc function already accepted an integer, but didn't pass it on to the kernel since we had no mechanism for it to do that.
Now, the kernel stores a task's exit status to display it later (and in the future, return it to userspace via wait()/waitpid())
This struct allows us to keep track of what memory is used by the loaded executable. For some reason, freeing this memory when the task exits triggers a kernel page fault, so I'm not doing that right now.