Add ATA drive support #27

Merged
apio merged 28 commits from please-read-my-ata-drive into main 2023-06-16 19:40:11 +00:00
24 changed files with 1696 additions and 30 deletions

View File

@ -43,6 +43,7 @@ set(SOURCES
src/fs/VFS.cpp
src/fs/Pipe.cpp
src/fs/Mount.cpp
src/fs/MBR.cpp
src/fs/tmpfs/FileSystem.cpp
src/fs/devices/DeviceRegistry.cpp
src/fs/devices/NullDevice.cpp
@ -65,6 +66,7 @@ if("${LUNA_ARCH}" MATCHES "x86_64")
src/arch/x86_64/Thread.cpp
src/arch/x86_64/PCI.cpp
src/arch/x86_64/Keyboard.cpp
src/arch/x86_64/disk/ATA.cpp
src/arch/x86_64/init/GDT.cpp
src/arch/x86_64/init/IDT.cpp
src/arch/x86_64/init/PIC.cpp

View File

@ -22,6 +22,9 @@ namespace CPU
void disable_interrupts();
void wait_for_interrupt();
bool save_interrupts();
void restore_interrupts(bool saved);
void get_stack_trace(void (*callback)(u64, void*), void* arg);
void print_stack_trace();
void get_stack_trace_at(Registers* regs, void (*callback)(u64, void*), void* arg);
@ -29,5 +32,8 @@ namespace CPU
u16 get_processor_id();
bool register_interrupt(u8 interrupt, void (*handler)(Registers*, void*), void* context);
void sync_interrupts();
void pause();
}

View File

@ -9,6 +9,10 @@ struct ScanInfo
namespace PCI
{
BAR::BAR(u32 raw) : m_raw(raw)
{
}
Device::ID read_id(const Device::Address& address)
{
const u16 vendor = read16(address, Field::VendorID);
@ -108,4 +112,13 @@ namespace PCI
}
}
}
BAR Device::getBAR(u8 index) const
{
check(index < 6);
u32 raw = read32(address, 0x10 + (index * 4));
return { raw };
}
}

View File

@ -17,7 +17,67 @@ namespace PCI
HeaderType = 0x0e,
SecondaryBus = 0x19
BAR0 = 0x10,
BAR1 = 0x14,
BAR2 = 0x18,
BAR3 = 0x1c,
SecondaryBus = 0x19,
InterruptLine = 0x3c,
};
enum CommandField : u16
{
CMD_IO_SPACE = 1 << 0,
CMD_MEMORY_SPACE = 1 << 1,
CMD_BUS_MASTER = 1 << 2,
CMD_SPECIAL_CYCLES = 1 << 3,
CMD_MEMORY_WRITE_AND_INVALIDATE = 1 << 4,
CMD_VGA_PALETTE_SNOOP = 1 << 5,
CMD_PARITY_ERROR_RESPONSE = 1 << 6,
CMD_SERR = 1 << 8,
CMD_FAST_BACK_TO_BACK = 1 << 9,
CMD_INTERRUPT_DISABLE = 1 << 10,
};
struct BAR
{
public:
BAR(u32 raw);
bool is_iospace()
{
return m_raw & 0x01;
}
bool is_memory_space()
{
return !is_iospace();
}
u16 port()
{
return (u16)(m_raw & 0xfffffffc);
}
u8 type()
{
return (m_raw >> 1) & 0x03;
}
bool is_prefetchable()
{
return m_raw & (1 << 3);
}
u32 address_32bit()
{
return m_raw & 0xFFFFFFF0;
}
private:
u32 m_raw;
};
struct Device
@ -42,6 +102,8 @@ namespace PCI
u32 function;
};
BAR getBAR(u8 index) const;
ID id;
Type type;
Address address;

View File

@ -188,4 +188,18 @@ ISR_ERROR 21 ; control-protection exception (#CP)
; ISR 22-31 reserved
IRQ 32, 0 ; timer interrupt
IRQ 33, 1 ; keyboard interrupt
IRQ 34, 2
IRQ 35, 3
IRQ 36, 4
IRQ 37, 5
IRQ 38, 6
IRQ 39, 7
IRQ 40, 8
IRQ 41, 9
IRQ 42, 10
IRQ 43, 11
IRQ 44, 12
IRQ 45, 13
IRQ 46, 14
IRQ 47, 15
ISR 66 ; system call

View File

@ -22,12 +22,23 @@ extern "C" void enable_nx();
extern void setup_gdt();
extern void remap_pic();
extern void change_pic_masks(u8 pic1_mask, u8 pic2_mask);
extern void pic_eoi(unsigned char irq);
extern void pic_eoi(Registers* regs);
extern void setup_idt();
static Thread* g_io_thread;
typedef void (*interrupt_handler_t)(Registers*, void*);
struct InterruptHandler
{
interrupt_handler_t function;
void* context;
};
static InterruptHandler irq_handlers[16];
void FPData::save()
{
asm volatile("fxsave (%0)" : : "r"(m_data));
@ -150,21 +161,34 @@ void io_thread()
}
}
static void timer_interrupt(Registers* regs, void*)
{
Timer::tick();
if (should_invoke_scheduler()) Scheduler::invoke(regs);
}
static void keyboard_interrupt(Registers*, void*)
{
u8 scancode = IO::inb(0x60);
scancode_queue.try_push(scancode);
g_io_thread->wake_up();
}
// Called from _asm_interrupt_entry
extern "C" void arch_interrupt_entry(Registers* regs)
{
if (regs->isr < 32) handle_x86_exception(regs);
else if (regs->isr == 32) // Timer interrupt
else if (regs->isr >= 32 && regs->isr < 48) // IRQ from the PIC
{
Timer::tick();
if (should_invoke_scheduler()) Scheduler::invoke(regs);
pic_eoi(regs);
u64 irq = regs->irq;
auto handler = irq_handlers[irq];
if (!handler.function)
{
kwarnln("Unhandled IRQ catched! Halting.");
CPU::efficient_halt();
}
else if (regs->isr == 33) // Keyboard interrupt
{
u8 scancode = IO::inb(0x60);
scancode_queue.try_push(scancode);
g_io_thread->wake_up();
handler.function(regs, handler.context);
pic_eoi(regs);
}
else if (regs->isr == 66) // System call
@ -174,7 +198,7 @@ extern "C" void arch_interrupt_entry(Registers* regs)
}
else
{
kwarnln("IRQ catched! Halting.");
kwarnln("Unhandled interrupt catched! Halting.");
CPU::efficient_halt();
}
}
@ -233,6 +257,10 @@ namespace CPU
kwarnln("not setting the NX bit as it is unsupported");
setup_gdt();
setup_idt();
memset(irq_handlers, 0, sizeof(irq_handlers));
register_interrupt(0, timer_interrupt, nullptr);
register_interrupt(1, keyboard_interrupt, nullptr);
}
void platform_finish_init()
@ -241,6 +269,8 @@ namespace CPU
.expect_value("Could not create the IO background thread!");
remap_pic();
sync_interrupts();
}
void enable_interrupts()
@ -253,6 +283,20 @@ namespace CPU
asm volatile("cli");
}
bool save_interrupts()
{
u64 flags;
asm volatile("pushfq; pop %0" : "=r"(flags));
return flags & 0x200;
}
void restore_interrupts(bool saved)
{
if (saved) enable_interrupts();
else
disable_interrupts();
}
void wait_for_interrupt()
{
asm volatile("hlt");
@ -353,6 +397,35 @@ namespace CPU
__get_cpuid(1, &unused, &ebx, &unused, &unused);
return (u16)(ebx >> 24);
}
bool register_interrupt(u8 interrupt, interrupt_handler_t handler, void* context)
{
if (irq_handlers[interrupt].function) return false;
irq_handlers[interrupt] = { handler, context };
sync_interrupts();
return true;
}
void sync_interrupts()
{
u8 pic1_mask, pic2_mask;
pic1_mask = pic2_mask = 0b11111111;
for (int i = 0; i < 8; i++)
{
if (irq_handlers[i].function) pic1_mask &= (u8)(~(1 << i));
if (irq_handlers[i + 8].function) pic2_mask &= (u8)(~(1 << i));
}
if (pic2_mask != 0b11111111) pic1_mask &= 0b11111011;
auto val = CPU::save_interrupts();
CPU::disable_interrupts();
change_pic_masks(pic1_mask, pic2_mask);
CPU::restore_interrupts(val);
}
}
// called by kernel_yield

View File

@ -5,7 +5,11 @@ struct Registers // Saved CPU registers for x86-64
{
u64 r15, r14, r13, r12, r11, r10, r9, r8;
u64 rbp, rdi, rsi, rdx, rcx, rbx, rax;
u64 isr, error;
u64 isr;
union {
u64 error;
u64 irq;
};
u64 rip, cs, rflags, rsp, ss;
};

View File

@ -33,19 +33,32 @@ namespace PCI
void write8(const Device::Address& address, u32 field, u8 value)
{
ignore(address, field, value);
todo();
u8 offset = (u8)(field & ~0x3);
union {
u8 split[4];
u32 full;
};
full = read32(address, offset);
split[(field & 0x3)] = value;
write32(address, offset, full);
}
void write16(const Device::Address& address, u32 field, u8 value)
void write16(const Device::Address& address, u32 field, u16 value)
{
ignore(address, field, value);
todo();
u8 offset = (u8)(field & ~0x3);
union {
u8 split[4];
u32 full;
};
full = read32(address, offset);
split[(field & 0x3)] = (u8)(value >> 8);
split[(field & 0x3) + 1] = (u8)(value & 0xff);
write32(address, offset, full);
}
void write32(const Device::Address& address, u32 field, u8 value)
void write32(const Device::Address& address, u32 field, u32 value)
{
ignore(address, field, value);
todo();
IO::outl(PCI_ADDRESS_PORT, make_pci_address(address, field));
IO::outl(PCI_VALUE_PORT, value);
}
}

View File

@ -0,0 +1,788 @@
#include "arch/x86_64/disk/ATA.h"
#include "Log.h"
#include "arch/Serial.h"
#include "arch/Timer.h"
#include "arch/x86_64/IO.h"
#include "fs/MBR.h"
#include "memory/MemoryManager.h"
#include <luna/Alignment.h>
#include <luna/CType.h>
#include <luna/SafeArithmetic.h>
#include <luna/Vector.h>
SharedPtr<ATA::Controller> g_controller;
static void irq_handler(Registers* regs, void* ctx)
{
((ATA::Controller*)ctx)->irq_handler(regs);
}
static usize copy_ata_string(char* out, u16* in, usize size)
{
for (usize i = 0; i < size; i += 2)
{
u16 val = in[i / 2];
out[i] = (u8)(val >> 8);
out[i + 1] = (u8)(val & 0xff);
}
out[size + 1] = '\0';
return size;
}
namespace ATA
{
Result<void> Controller::scan()
{
// FIXME: Propagate errors.
PCI::scan(
[](const PCI::Device& device) {
if (!g_controller)
{
auto controller = adopt_shared_if_nonnull(new (std::nothrow) Controller(device)).release_value();
kinfoln("ata: Found ATA controller on PCI bus (%x:%x:%x)", device.address.bus,
device.address.function, device.address.slot);
if (controller->initialize()) g_controller = controller;
}
},
{ .klass = 1, .subclass = 1 });
if (!g_controller) kwarnln("ata: No ATA controller found.");
return {};
}
bool Controller::initialize()
{
u16 command_old = PCI::read16(m_device.address, PCI::Command);
u16 command_new = command_old;
command_new &= ~PCI::CMD_INTERRUPT_DISABLE;
command_new |= PCI::CMD_IO_SPACE;
command_new |= PCI::CMD_BUS_MASTER;
if (command_new != command_old) PCI::write16(m_device.address, PCI::Command, command_new);
if (!m_primary_channel.initialize()) return false;
return m_secondary_channel.initialize();
}
void Controller::irq_handler(Registers* regs)
{
if (regs->irq == m_primary_channel.irq_line()) m_primary_channel.irq_handler(regs);
if (regs->irq == m_secondary_channel.irq_line()) m_secondary_channel.irq_handler(regs);
}
Controller::Controller(const PCI::Device& device)
: m_device(device), m_primary_channel(this, 0, {}), m_secondary_channel(this, 1, {})
{
}
Channel::Channel(Controller* controller, u8 channel_index, Badge<Controller>)
: m_controller(controller), m_channel_index(channel_index)
{
}
u8 Channel::read_register(Register reg)
{
return IO::inb(m_io_base + (u16)reg);
}
u16 Channel::read_data()
{
return IO::inw(m_io_base + (u16)Register::Data);
}
void Channel::write_data(u16 value)
{
IO::outw(m_io_base + (u16)Register::Data, value);
}
void Channel::write_register(Register reg, u8 value)
{
IO::outb(m_io_base + (u16)reg, value);
}
u8 Channel::read_control(ControlRegister reg)
{
return IO::inb(m_control_base + (u16)reg);
}
void Channel::write_control(ControlRegister reg, u8 value)
{
IO::outb(m_control_base + (u16)reg, value);
}
u8 Channel::read_bm(BusmasterRegister reg)
{
return IO::inb(m_busmaster_base + (u16)reg);
}
void Channel::write_bm(BusmasterRegister reg, u8 value)
{
IO::outb(m_busmaster_base + (u16)reg, value);
}
u32 Channel::read_prdt_address()
{
return IO::inl(m_busmaster_base + (u16)BusmasterRegister::PRDTAddress);
}
void Channel::write_prdt_address(u32 value)
{
IO::outl(m_busmaster_base + (u16)BusmasterRegister::PRDTAddress, value);
}
void Channel::delay_400ns()
{
// FIXME: We should use kernel_sleep(), but it doesn't support nanosecond granularity.
for (int i = 0; i < 14; i++) { [[maybe_unused]] volatile u8 val = read_control(ControlRegister::AltStatus); }
}
void Channel::select(u8 drive)
{
if (drive == m_current_drive) return;
u8 value = (drive << 4) | 0xa0;
write_register(Register::DriveSelect, value);
delay_400ns();
m_current_drive = drive;
}
void Channel::irq_handler(Registers*)
{
if (!(read_bm(BusmasterRegister::Status) & BMS_IRQPending)) return;
if (m_current_drive < 2 && m_drives[m_current_drive]) m_drives[m_current_drive]->irq_handler();
m_irq_called = true;
if (m_thread) m_thread->wake_up();
}
void Channel::prepare_for_irq()
{
m_thread = Scheduler::current();
m_irq_called = false;
}
void Channel::wait_for_irq()
{
if (!m_irq_called) kernel_wait_for_event();
m_irq_called = false;
}
bool Channel::wait_for_irq_or_timeout(u64 timeout)
{
if (!m_irq_called)
{
kernel_sleep(timeout);
m_irq_called = false;
return m_thread->sleep_ticks_left;
}
m_irq_called = false;
return true;
}
bool Channel::wait_for_reg_set(Register reg, u8 value, u64 timeout)
{
u64 begin = Timer::ticks_ms();
while (true)
{
u8 reg_value = reg == Register::Status ? read_control(ControlRegister::AltStatus) : read_register(reg);
if (reg_value & value) return true;
if ((Timer::ticks_ms() - begin) >= timeout) return false;
kernel_sleep(1);
}
}
bool Channel::wait_for_reg_clear(Register reg, u8 value, u64 timeout)
{
u64 begin = Timer::ticks_ms();
while (true)
{
u8 reg_value = reg == Register::Status ? read_control(ControlRegister::AltStatus) : read_register(reg);
if ((reg_value & value) == 0) return true;
if ((Timer::ticks_ms() - begin) >= timeout) return false;
kernel_sleep(1);
}
}
Result<void> Channel::wait_until_ready()
{
if (!wait_for_reg_clear(Register::Status, SR_Busy, 1000))
{
kwarnln("ata: Drive %d:%d timed out (BSY)", m_channel_index, m_current_drive);
return err(EIO);
}
if (!wait_for_reg_set(Register::Status, SR_DataRequestReady | SR_Error, 1000))
{
kwarnln("ata: Drive %d:%d timed out (DRQ)", m_channel_index, m_current_drive);
return err(EIO);
}
u8 status = read_control(ControlRegister::AltStatus);
if (status & SR_Error)
{
kwarnln("ata: An error occurred in drive %d:%d while waiting for data to become available", m_channel_index,
m_current_drive);
return err(EIO);
}
return {};
}
bool Channel::initialize()
{
int offset = m_channel_index ? 2 : 0;
m_is_pci_native_mode = m_controller->device().type.prog_if & (1 << offset);
u16 control_port_base_address;
u16 io_base_address;
if (m_is_pci_native_mode)
{
auto io_base = m_controller->device().getBAR(m_channel_index ? 2 : 0);
if (!io_base.is_iospace())
{
kwarnln("ata: Channel %d's IO base BAR is not in IO space", m_channel_index);
return false;
}
io_base_address = io_base.port();
auto io_control = m_controller->device().getBAR(m_channel_index ? 3 : 1);
if (!io_control.is_iospace())
{
kwarnln("ata: Channel %d's control base BAR is not in IO space", m_channel_index);
return false;
}
control_port_base_address = io_control.port() + 2;
}
else
{
io_base_address = m_channel_index ? 0x170 : 0x1f0;
control_port_base_address = m_channel_index ? 0x376 : 0x3f6;
}
m_io_base = io_base_address;
m_control_base = control_port_base_address;
auto io_busmaster = m_controller->device().getBAR(4);
if (!io_busmaster.is_iospace())
{
kwarnln("ata: Channel %d's busmaster base BAR is not in IO space", m_channel_index);
return false;
}
m_busmaster_base = io_busmaster.port() + (u16)(m_channel_index * 8u);
if (m_is_pci_native_mode) m_interrupt_line = PCI::read8(m_controller->device().address, PCI::InterruptLine);
else
m_interrupt_line = m_channel_index ? 15 : 14;
write_control(ControlRegister::DeviceControl, 0);
for (u8 drive = 0; drive < 2; drive++)
{
ScopedKMutexLock<100> lock(m_lock);
select(drive);
if (read_register(Register::Status) == 0)
{
// No drive on this slot.
continue;
}
kinfoln("ata: Channel %d has a drive on slot %d!", m_channel_index, drive);
auto rc = adopt_shared_if_nonnull(new (std::nothrow) Drive(this, drive, {}));
if (rc.has_error())
{
kinfoln("ata: Failed to create drive object: %s", rc.error_string());
return false;
}
m_drives[drive] = rc.release_value();
if (!m_drives[drive]->initialize())
{
m_drives[drive] = {};
return false;
}
}
CPU::register_interrupt(m_interrupt_line, ::irq_handler, m_controller);
for (u8 drive = 0; drive < 2; drive++)
{
if (m_drives[drive])
{
if (!m_drives[drive]->post_initialize())
{
m_drives[drive] = {};
return false;
}
auto rc = ATADevice::create(m_drives[drive]);
if (rc.has_error())
{
kwarnln("ata: Failed to register ATA drive %d:%d in DeviceRegistry", m_channel_index, drive);
continue;
}
auto device = rc.release_value();
MBR::identify(device);
}
}
return true;
}
Drive::Drive(Channel* channel, u8 drive_index, Badge<Channel>) : m_channel(channel), m_drive_index(drive_index)
{
}
bool Drive::identify_ata()
{
m_channel->write_register(Register::Command, m_is_atapi ? CMD_Identify_Packet : CMD_Identify);
m_channel->delay_400ns();
if (!m_channel->wait_for_reg_clear(Register::Status, SR_Busy, 1000))
{
kwarnln("ata: Drive %d timed out clearing SR_Busy (waited for 1000 ms)", m_drive_index);
return false;
}
if (m_channel->read_register(Register::Status) & SR_Error)
{
u8 lbam = m_channel->read_register(Register::LBAMiddle);
u8 lbah = m_channel->read_register(Register::LBAHigh);
if ((lbam == 0x14 && lbah == 0xeb) || (lbam == 0x69 && lbah == 0x96))
{
if (!m_is_atapi)
{
kinfoln("ata: Drive %d is ATAPI, sending IDENTIFY_PACKET command", m_drive_index);
m_is_atapi = true;
return identify_ata();
}
}
kwarnln("ata: IDENTIFY command for drive %d returned error", m_drive_index);
return false;
}
if (!m_channel->wait_for_reg_set(Register::Status, SR_DataRequestReady | SR_Error, 1000))
{
kwarnln("ata: Drive %d timed out setting SR_DataRequestReady (waited for 1000 ms)", m_drive_index);
return false;
}
u8 status = m_channel->read_register(Register::Status);
if (status & SR_Error)
{
kwarnln("ata: IDENTIFY command for drive %d returned error", m_drive_index);
return false;
}
for (usize i = 0; i < 256; i++)
{
u16 data = m_channel->read_data();
m_identify_words[i] = data;
}
return true;
}
bool Drive::initialize()
{
m_channel->select(m_drive_index);
m_channel->write_register(Register::SectorCount, 0);
m_channel->write_register(Register::LBALow, 0);
m_channel->write_register(Register::LBAMiddle, 0);
m_channel->write_register(Register::LBAHigh, 0);
if (!identify_ata()) return false;
m_serial.set_length(copy_ata_string(m_serial.data(), &m_identify_words[10], SERIAL_LEN));
m_revision.set_length(copy_ata_string(m_revision.data(), &m_identify_words[23], REVISION_LEN));
m_model.set_length(copy_ata_string(m_model.data(), &m_identify_words[27], MODEL_LEN));
m_serial.trim(" ");
m_revision.trim(" ");
m_model.trim(" ");
kinfoln("ata: Drive IDENTIFY returned serial='%s', revision='%s' and model='%s'", m_serial.chars(),
m_revision.chars(), m_model.chars());
auto status = m_channel->read_bm(BusmasterRegister::Status);
if (status & BMS_SimplexOnly)
{
kwarnln("ata: Drive %d will not use DMA because of simplex shenanigans", m_drive_index);
m_uses_dma = false;
}
auto frame = MemoryManager::alloc_frame();
if (frame.has_error() || frame.value() > 0xffffffff)
{
kwarnln("ata: Failed to allocate memory below the 32-bit limit for the PRDT");
return false;
}
m_dma_prdt_phys = frame.release_value();
m_dma_prdt = (prdt_entry*)MMU::translate_physical_address(m_dma_prdt_phys);
memset(m_dma_prdt, 0, ARCH_PAGE_SIZE);
frame = MemoryManager::alloc_frame();
if (frame.has_error() || frame.value() > 0xffffffff)
{
kwarnln("ata: Failed to allocate memory below the 32-bit limit for DMA memory");
return false;
}
m_dma_mem_phys = frame.release_value();
m_dma_mem = (void*)MMU::translate_physical_address(m_dma_mem_phys);
memset(const_cast<void*>(m_dma_mem), 0, ARCH_PAGE_SIZE);
if (m_uses_dma)
{
auto cmd = m_channel->read_bm(BusmasterRegister::Command);
cmd &= ~BMC_StartStop;
m_channel->write_bm(BusmasterRegister::Command, cmd);
}
return true;
}
bool Drive::post_initialize()
{
if (m_is_atapi)
{
atapi_packet packet;
memset(&packet, 0, sizeof(packet));
packet.command_bytes[0] = ATAPI_ReadCapacity;
atapi_read_capacity_reply reply;
if (send_packet_atapi_pio(&packet, &reply, sizeof(reply)).has_error())
{
kwarnln("ata: Failed to send Read Capacity command to ATAPI drive");
return false;
}
m_is_lba48 = true;
// FIXME: This assumes the host machine is little-endian.
u32 last_lba = __builtin_bswap32(reply.last_lba);
u32 sector_size = __builtin_bswap32(reply.sector_size);
m_block_count = last_lba + 1;
m_block_size = sector_size;
}
else
{
if (m_identify_data.big_lba) m_is_lba48 = true;
if (m_is_lba48) m_block_count = m_identify_data.sectors_48;
else
m_block_count = m_identify_data.sectors_28;
// FIXME: Should we check for CHS?
// FIXME: Maybe a different block size is in use? Detect that.
m_block_size = 512;
}
u64 total_capacity;
if (!safe_mul(m_block_count, m_block_size).try_set_value(total_capacity))
{
kwarnln("ata: Drive %d's total capacity is too large", m_drive_index);
return false;
}
kinfoln("ata: Drive %d capacity information: Block Count=%lu, Block Size=%lu, Total Capacity=%lu",
m_drive_index, m_block_count, m_block_size, total_capacity);
return true;
}
Result<void> Drive::send_packet_atapi_pio(const atapi_packet* packet, void* out, u16 response_size)
{
u8* ptr = (u8*)out;
m_channel->select(m_drive_index);
// We use PIO here.
m_channel->write_register(Register::Features, 0x00);
m_channel->write_register(Register::LBAMiddle, (u8)(response_size & 0xff));
m_channel->write_register(Register::LBAHigh, (u8)(response_size >> 8));
m_channel->write_register(Register::Command, CMD_Packet);
m_channel->delay_400ns();
usize i = 0;
TRY(m_channel->wait_until_ready());
for (int j = 0; j < 6; j++) m_channel->write_data(packet->command_words[j]);
while (i < response_size)
{
TRY(m_channel->wait_until_ready());
usize byte_count =
m_channel->read_register(Register::LBAHigh) << 8 | m_channel->read_register(Register::LBAMiddle);
usize word_count = byte_count / 2;
while (word_count--)
{
u16 value = m_channel->read_data();
ptr[0] = (u8)(value & 0xff);
ptr[1] = (u8)(value >> 8);
ptr += 2;
}
i += byte_count;
}
return {};
}
#if 0
Result<void> Drive::send_packet_atapi_dma(const atapi_packet* packet, void* out, u16 response_size)
{
check(m_uses_dma);
m_channel->select(m_drive_index);
kdbgln("have selected");
// We use DMA here.
m_channel->write_register(Register::Features, 0x01);
m_channel->write_register(Register::LBAMiddle, 0);
m_channel->write_register(Register::LBAHigh, 0);
kdbgln("will do_dma_command");
TRY(do_dma_command(CMD_Packet, response_size, false));
TRY(m_channel->wait_until_ready());
kdbgln("send atapi packet data");
for (int j = 0; j < 6; j++) m_channel->write_data(packet->command_words[j]);
kdbgln("do dma transfer");
TRY(do_dma_transfer());
memcpy(out, const_cast<void*>(m_dma_mem), response_size);
return {};
}
Result<void> Drive::do_dma_command(u8 command, u16 count, bool write)
{
m_dma_prdt->address = (u32)m_dma_mem_phys;
m_dma_prdt->count = count;
m_dma_prdt->flags = END_OF_PRDT;
kdbgln("ata: do_dma_command: phys=%x, command=%x, count=%u, write=%d", m_dma_prdt->address, command, count,
write);
m_channel->write_prdt_address((u32)m_dma_prdt_phys);
auto status = m_channel->read_bm(BusmasterRegister::Status);
status &= ~(BMS_DMAFailure | BMS_IRQPending);
m_channel->write_bm(BusmasterRegister::Status, status);
auto cmd = m_channel->read_bm(BusmasterRegister::Command);
if (!write) cmd |= BMC_ReadWrite;
else
cmd &= ~BMC_ReadWrite;
m_channel->write_bm(BusmasterRegister::Command, cmd);
m_channel->prepare_for_irq();
m_channel->write_register(Register::Command, command);
cmd = m_channel->read_bm(BusmasterRegister::Command);
cmd |= BMC_StartStop;
m_channel->write_bm(BusmasterRegister::Command, cmd);
m_channel->delay_400ns();
return {};
}
Result<void> Drive::do_dma_transfer()
{
if (!m_channel->wait_for_irq_or_timeout(2000))
{
kwarnln("ata: Drive %d timed out (DMA)", m_drive_index);
return err(EIO);
}
u8 status = m_channel->read_control(ControlRegister::AltStatus);
kdbgln("ata: status after irq: %#x", status);
m_channel->delay_400ns();
auto cmd = m_channel->read_bm(BusmasterRegister::Command);
cmd &= ~BMC_StartStop;
m_channel->write_bm(BusmasterRegister::Command, cmd);
status = m_channel->read_bm(BusmasterRegister::Status);
m_channel->write_bm(BusmasterRegister::Status, status & ~(BMS_DMAFailure | BMS_IRQPending));
if (status & BMS_DMAFailure)
{
kwarnln("ata: DMA failure while trying to read drive %d", m_drive_index);
return err(EIO);
}
return {};
}
#endif
Result<void> Drive::atapi_read_pio(u64 lba, void* out, usize size)
{
check(lba < m_block_count);
check(size <= ARCH_PAGE_SIZE);
atapi_packet read_packet;
memset(&read_packet, 0, sizeof(read_packet));
read_packet.command_bytes[0] = ATAPI_Read;
read_packet.command_bytes[2] = (lba >> 0x18) & 0xff;
read_packet.command_bytes[3] = (lba >> 0x10) & 0xff;
read_packet.command_bytes[4] = (lba >> 0x08) & 0xff;
read_packet.command_bytes[5] = (lba >> 0x00) & 0xff;
read_packet.command_bytes[9] = (u8)(size / m_block_size);
return send_packet_atapi_pio(&read_packet, out, (u16)size);
}
Result<void> Drive::read_lba(u64 lba, void* out, usize nblocks)
{
const usize blocks_per_page = ARCH_PAGE_SIZE / m_block_size;
if (m_is_atapi)
{
while (nblocks > blocks_per_page)
{
TRY(atapi_read_pio(lba, out, ARCH_PAGE_SIZE));
lba += blocks_per_page;
nblocks -= blocks_per_page;
out = offset_ptr(out, ARCH_PAGE_SIZE);
}
return atapi_read_pio(lba, out, nblocks * m_block_size);
}
else
todo();
}
void Drive::irq_handler()
{
// Clear the IRQ flag.
u8 status = m_channel->read_register(Register::Status);
if (status & SR_Error)
{
u8 error = m_channel->read_register(Register::Error);
(void)error;
}
if (m_uses_dma)
{
status = m_channel->read_bm(BusmasterRegister::Status);
if (status & BMS_DMAFailure) { kwarnln("ata: DMA failure in irq"); }
m_channel->write_bm(BusmasterRegister::Status, 4);
}
}
}
static u32 next_minor = 0;
Result<String> ATA::Drive::create_drive_name(SharedPtr<ATA::Drive> drive)
{
static u32 cd_index = 0;
static u32 sd_index = 0;
return String::format("%s%d"_sv, drive->m_is_atapi ? "cd" : "sd", drive->m_is_atapi ? cd_index++ : sd_index++);
}
Result<SharedPtr<Device>> ATADevice::create(SharedPtr<ATA::Drive> drive)
{
auto device = TRY(adopt_shared_if_nonnull(new (std::nothrow) ATADevice()));
device->m_drive = drive;
device->m_device_path = TRY(ATA::Drive::create_drive_name(drive));
TRY(DeviceRegistry::register_special_device(DeviceRegistry::Disk, next_minor++, device,
device->m_device_path.chars(), 0400));
return (SharedPtr<Device>)device;
}
Result<u64> ATADevice::read(u8* buf, usize offset, usize size) const
{
if (size == 0) return 0;
if (offset > m_drive->capacity()) return 0;
if (offset + size > m_drive->capacity()) size = m_drive->capacity() - offset;
usize length = size;
auto block_size = m_drive->block_size();
auto* temp = TRY(make_array<u8>(block_size));
auto guard = make_scope_guard([temp] { delete[] temp; });
if (offset % block_size)
{
usize extra_size = block_size - (offset % block_size);
TRY(m_drive->read_lba(offset / block_size, temp, 1));
memcpy(buf, temp + (offset % block_size), extra_size);
offset += extra_size;
size -= extra_size;
buf += extra_size;
}
while (size >= ARCH_PAGE_SIZE)
{
TRY(m_drive->read_lba(offset / block_size, buf, ARCH_PAGE_SIZE / block_size));
offset += ARCH_PAGE_SIZE;
size -= ARCH_PAGE_SIZE;
buf += ARCH_PAGE_SIZE;
}
while (size >= block_size)
{
TRY(m_drive->read_lba(offset / block_size, buf, 1));
offset += block_size;
size -= block_size;
buf += block_size;
}
if (size)
{
TRY(m_drive->read_lba(offset / block_size, temp, 1));
memcpy(buf, temp, size);
}
return length;
}

View File

@ -0,0 +1,334 @@
#pragma once
#include "arch/PCI.h"
#include "fs/devices/DeviceRegistry.h"
#include "lib/KMutex.h"
#include <luna/Atomic.h>
#include <luna/SharedPtr.h>
#include <luna/StaticString.h>
namespace ATA
{
enum class Register : u16
{
Data = 0,
Error = 1,
Features = 1,
SectorCount = 2,
SectorNumber = 3,
LBALow = 3,
CylinderLow = 4,
LBAMiddle = 4,
CylinderHigh = 5,
LBAHigh = 5,
DriveSelect = 6,
Status = 7,
Command = 7,
};
enum class ControlRegister : u16
{
AltStatus = 0,
DeviceControl = 0,
DriveAddress = 1,
};
enum class BusmasterRegister : u16
{
Command = 0,
Status = 2,
PRDTAddress = 4,
};
enum StatusRegister : u8
{
SR_Busy = 0x80,
SR_DriveReady = 0x40,
SR_WriteFault = 0x20,
SR_SeekComplete = 0x10,
SR_DataRequestReady = 0x08,
SR_CorrectedData = 0x04,
SR_Index = 0x02,
SR_Error = 0x01
};
enum CommandRegister : u8
{
CMD_Identify = 0xec,
CMD_Packet = 0xa0,
CMD_Identify_Packet = 0xa1
};
enum BusMasterStatus : u8
{
BMS_SimplexOnly = 0x80,
BMS_SlaveInit = 0x40,
BMS_MasterInit = 0x20,
BMS_IRQPending = 0x4,
BMS_DMAFailure = 0x2,
BMS_DMAMode = 0x1
};
enum BusMasterCommand : u8
{
BMC_ReadWrite = 0x8,
BMC_StartStop = 0x1,
};
struct ATAIdentify
{
u16 flags;
u16 unused1[9];
char serial[20];
u16 unused2[3];
char firmware[8];
char model[40];
u16 sectors_per_int;
u16 unused3;
u16 capabilities[2];
u16 unused4[2];
u16 valid_ext_data;
u16 unused5[5];
u16 size_of_rw_mult;
u32 sectors_28;
u16 unused6[21];
u16 unused7 : 10;
u16 big_lba : 1;
u16 unused8 : 5;
u16 unused9[17];
u64 sectors_48;
u16 unused10[152];
};
enum ATAPICommand : u8
{
ATAPI_ReadCapacity = 0x25,
ATAPI_Read = 0xa8,
};
class Controller;
class Channel;
struct prdt_entry
{
u32 address;
u16 count;
u16 flags;
};
struct atapi_packet
{
union {
u16 command_words[6];
u8 command_bytes[12];
};
};
struct atapi_read_capacity_reply
{
u32 last_lba;
u32 sector_size;
};
static constexpr u16 END_OF_PRDT = (1 << 15);
class Drive
{
public:
Drive(Channel* channel, u8 drive_index, Badge<Channel>);
bool initialize();
bool post_initialize();
void irq_handler();
usize block_size() const
{
return m_block_size;
}
usize block_count() const
{
return m_block_count;
}
usize capacity() const
{
return m_block_count * m_block_size;
}
Result<void> read_lba(u64 lba, void* out, usize nblocks);
static Result<String> create_drive_name(SharedPtr<ATA::Drive> drive);
private:
bool identify_ata();
Result<void> send_packet_atapi_pio(const atapi_packet* packet, void* out, u16 response_size);
#if 0
Result<void> send_packet_atapi_dma(const atapi_packet* packet, void* out, u16 response_size);
Result<void> do_dma_command(u8 command, u16 count, bool write);
Result<void> do_dma_transfer();
#endif
Result<void> atapi_read_pio(u64 lba, void* out, usize size);
Channel* m_channel;
u8 m_drive_index;
union {
u16 m_identify_words[256];
ATAIdentify m_identify_data;
};
bool m_is_atapi { false };
bool m_uses_dma { true };
bool m_is_lba48;
u64 m_block_count;
u64 m_block_size;
prdt_entry* m_dma_prdt;
u64 m_dma_prdt_phys;
volatile void* m_dma_mem;
u64 m_dma_mem_phys;
constexpr static usize SERIAL_LEN = 20;
constexpr static usize REVISION_LEN = 8;
constexpr static usize MODEL_LEN = 40;
StaticString<SERIAL_LEN> m_serial;
StaticString<REVISION_LEN> m_revision;
StaticString<MODEL_LEN> m_model;
};
class Channel
{
public:
Channel(Controller* controller, u8 channel_index, Badge<Controller>);
u8 read_register(Register reg);
u16 read_data();
void write_data(u16 value);
void write_register(Register reg, u8 value);
u8 read_control(ControlRegister reg);
void write_control(ControlRegister reg, u8 value);
u8 read_bm(BusmasterRegister reg);
void write_bm(BusmasterRegister reg, u8 value);
u32 read_prdt_address();
void write_prdt_address(u32 value);
bool wait_for_reg_set(Register reg, u8 value, u64 timeout);
bool wait_for_reg_clear(Register reg, u8 value, u64 timeout);
Result<void> wait_until_ready();
void delay_400ns();
void prepare_for_irq();
void wait_for_irq();
bool wait_for_irq_or_timeout(u64 timeout);
void irq_handler(Registers*);
u8 irq_line()
{
return m_interrupt_line;
}
void select(u8 drive);
bool initialize();
private:
Controller* m_controller;
u8 m_channel_index;
bool m_is_pci_native_mode;
u8 m_interrupt_line;
KMutex<100> m_lock {};
Thread* m_thread { nullptr };
u16 m_io_base;
u16 m_control_base;
u16 m_busmaster_base;
bool m_irq_called { false };
u8 m_current_drive = (u8)-1;
SharedPtr<Drive> m_drives[2];
};
class Controller
{
public:
static Result<void> scan();
const PCI::Device& device() const
{
return m_device;
}
bool initialize();
void irq_handler(Registers*);
private:
Controller(const PCI::Device& device);
PCI::Device m_device;
Channel m_primary_channel;
Channel m_secondary_channel;
};
}
class ATADevice : public Device
{
public:
// Initializer for DeviceRegistry.
static Result<SharedPtr<Device>> create(SharedPtr<ATA::Drive> drive);
Result<usize> read(u8*, usize, usize) const override;
Result<usize> write(const u8*, usize, usize) override
{
return err(ENOTSUP);
}
bool blocking() const override
{
return false;
}
bool is_block_device() const override
{
return true;
}
usize size() const override
{
return m_drive->capacity();
}
Result<usize> block_size() const override
{
return m_drive->block_size();
}
StringView device_path() const override
{
return m_device_path.view();
}
virtual ~ATADevice() = default;
private:
ATADevice() = default;
SharedPtr<ATA::Drive> m_drive;
String m_device_path;
};

View File

@ -84,6 +84,20 @@ INT(20);
INT(21);
INT(32);
INT(33);
INT(34);
INT(35);
INT(36);
INT(37);
INT(38);
INT(39);
INT(40);
INT(41);
INT(42);
INT(43);
INT(44);
INT(45);
INT(46);
INT(47);
INT(66);
void setup_idt()
@ -112,6 +126,20 @@ void setup_idt()
TRAP(21);
IRQ(32);
IRQ(33);
IRQ(34);
IRQ(35);
IRQ(36);
IRQ(37);
IRQ(38);
IRQ(39);
IRQ(40);
IRQ(41);
IRQ(42);
IRQ(43);
IRQ(44);
IRQ(45);
IRQ(46);
IRQ(47);
SYS(66);
static IDTR idtr;

View File

@ -36,9 +36,18 @@ void remap_pic()
IO::outb(PIC2_DATA, ICW4_8086);
io_delay();
IO::outb(PIC1_DATA, 0b11111100);
IO::outb(PIC1_DATA, 0b11111111);
io_delay();
IO::outb(PIC2_DATA, 0b11111111);
io_delay();
}
void change_pic_masks(u8 pic1_mask, u8 pic2_mask)
{
IO::outb(PIC1_DATA, pic1_mask);
io_delay();
IO::outb(PIC2_DATA, pic2_mask);
io_delay();
}
void pic_eoi(unsigned char irq)
@ -49,5 +58,5 @@ void pic_eoi(unsigned char irq)
void pic_eoi(Registers* regs)
{
pic_eoi((unsigned char)(regs->error)); // On IRQs, the error code is the IRQ number
pic_eoi((unsigned char)(regs->irq));
}

78
kernel/src/fs/MBR.cpp Normal file
View File

@ -0,0 +1,78 @@
#include "fs/MBR.h"
#include "Log.h"
#include <luna/CType.h>
static Result<String> create_partition_name(SharedPtr<Device> host_device, u32 partition_index)
{
auto host_path = host_device->device_path();
char last = host_path[host_path.length() - 1];
if (_isdigit(last)) return String::format("%sp%d"_sv, host_path.chars(), partition_index);
return String::format("%s%d"_sv, host_path.chars(), partition_index);
}
namespace MBR
{
Result<void> PartitionDevice::create(SharedPtr<Device> host_device, usize start_block, usize num_blocks,
u32 partition_index)
{
static u32 next_minor = 0;
auto device = TRY(adopt_shared_if_nonnull(new (std::nothrow) PartitionDevice()));
device->m_host_device = host_device;
device->m_start_offset = start_block * device->m_block_size;
device->m_num_blocks = num_blocks;
device->m_device_path = TRY(create_partition_name(host_device, partition_index));
return DeviceRegistry::register_special_device(DeviceRegistry::DiskPartition, next_minor++, device,
device->m_device_path.chars(), 0400);
}
Result<usize> PartitionDevice::read(u8* buf, usize offset, usize length) const
{
if (length == 0) return 0;
if (offset > size()) return 0;
if (offset + length > size()) length = size() - offset;
return m_host_device->read(buf, m_start_offset + offset, length);
}
Result<usize> PartitionDevice::write(const u8* buf, usize offset, usize length)
{
if (length == 0) return 0;
if (offset > size()) return 0;
if (offset + length > size()) length = size() - offset;
return m_host_device->write(buf, m_start_offset + offset, length);
}
Result<bool> identify(SharedPtr<Device> device)
{
// Cannot read a partition table from a character device! Who is even coming up with this silliness?
if (!device->is_block_device()) return false;
DiskHeader hdr;
const usize nread = TRY(device->read((u8*)&hdr, 0, sizeof(hdr)));
check(nread == 512);
if (hdr.signature[0] != MBR_SIGNATURE_1 || hdr.signature[1] != MBR_SIGNATURE_2) return false;
u32 partition_index = 0;
for (int i = 0; i < 4; i++)
{
const auto& part = hdr.partitions[i];
if (part.partition_type == 0) continue; // Not active.
bool bootable = part.attributes & MBR_BOOTABLE;
kinfoln("mbr: Partition #%d is active: bootable=%d, type=%x, start=%d, sectors=%d", i, bootable,
part.partition_type, part.start_lba, part.num_sectors);
TRY(PartitionDevice::create(device, part.start_lba, part.num_sectors, partition_index++));
}
return true;
}
}

83
kernel/src/fs/MBR.h Normal file
View File

@ -0,0 +1,83 @@
#pragma once
#include "fs/devices/DeviceRegistry.h"
#include <luna/String.h>
#include <luna/Types.h>
#define MBR_BOOTABLE 0x80
#define MBR_SIGNATURE_1 0x55
#define MBR_SIGNATURE_2 0xAA
namespace MBR
{
struct [[gnu::packed]] PartitionHeader
{
u8 attributes;
u8 chs_start[3];
u8 partition_type;
u8 chs_end[3];
u32 start_lba;
u32 num_sectors;
};
struct [[gnu::packed]] DiskHeader
{
u8 mbr_code[440];
u8 disk_id[4];
u8 reserved[2];
PartitionHeader partitions[4];
u8 signature[2];
};
class PartitionDevice : public Device
{
public:
// Initializer for DeviceRegistry.
static Result<void> create(SharedPtr<Device> host_device, usize start_block, usize num_blocks,
u32 partition_index);
Result<usize> read(u8*, usize, usize) const override;
Result<usize> write(const u8* buf, usize offset, usize length) override;
bool blocking() const override
{
return false;
}
bool is_block_device() const override
{
return true;
}
usize size() const override
{
return m_num_blocks * m_block_size;
}
Result<usize> block_size() const override
{
return m_block_size;
}
StringView device_path() const override
{
return m_device_path.view();
}
virtual ~PartitionDevice() = default;
private:
PartitionDevice() = default;
SharedPtr<Device> m_host_device;
usize m_block_size { 512ul };
usize m_start_offset;
usize m_num_blocks;
String m_device_path;
};
static_assert(sizeof(DiskHeader) == 512ul);
Result<bool> identify(SharedPtr<Device> device);
};

View File

@ -17,5 +17,10 @@ class ConsoleDevice : public Device
Result<u64> ioctl(int request, void* arg) override;
StringView device_path() const override
{
return "console";
}
virtual ~ConsoleDevice() = default;
};

View File

@ -1,4 +1,5 @@
#pragma once
#include "Log.h"
#include <luna/Result.h>
class Device
@ -23,6 +24,17 @@ class Device
return false;
}
virtual Result<usize> block_size() const
{
// Block devices should override this function.
kwarnln("Device::block_size() was called on a character device or block device without block size");
return err(ENOTSUP);
}
// Path in devfs.
virtual StringView device_path() const = 0;
virtual bool blocking() const = 0;
virtual ~Device() = default;

View File

@ -13,6 +13,8 @@ namespace DeviceRegistry
Console = 1,
Memory = 2,
Framebuffer = 3,
Disk = 4,
DiskPartition = 5,
};
Result<SharedPtr<Device>> fetch_special_device(u32 major, u32 minor);

View File

@ -22,5 +22,10 @@ class FramebufferDevice : public Device
usize size() const override;
StringView device_path() const override
{
return "fb0";
}
virtual ~FramebufferDevice() = default;
};

View File

@ -24,5 +24,10 @@ class FullDevice : public Device
return false;
}
StringView device_path() const override
{
return "full";
}
virtual ~FullDevice() = default;
};

View File

@ -22,5 +22,10 @@ class NullDevice : public Device
return false;
}
StringView device_path() const override
{
return "null";
}
virtual ~NullDevice() = default;
};

View File

@ -24,5 +24,10 @@ class ZeroDevice : public Device
return false;
}
StringView device_path() const override
{
return "zero";
}
virtual ~ZeroDevice() = default;
};

77
kernel/src/lib/KMutex.h Normal file
View File

@ -0,0 +1,77 @@
#pragma once
#include "Log.h"
#include "arch/CPU.h"
#include "thread/Scheduler.h"
#include "thread/Thread.h"
#include <luna/CircularQueue.h>
template <usize ConcurrentThreads> class KMutex
{
public:
void lock()
{
int expected = 0;
while (!m_lock.compare_exchange_strong(expected, 1))
{
expected = 0;
auto* current = Scheduler::current();
// We cannot be interrupted between these functions, otherwise we might never exit the loop
CPU::disable_interrupts();
bool ok = m_blocked_threads.try_push(current);
if (!ok) kernel_sleep(10);
else
kernel_wait_for_event();
CPU::enable_interrupts();
}
};
void unlock()
{
int expected = 1;
if (!m_lock.compare_exchange_strong(expected, 0))
{
kwarnln("KMutex::unlock() called on an unlocked lock with value %d", expected);
}
Thread* blocked;
if (m_blocked_threads.try_pop(blocked)) blocked->wake_up();
}
bool try_lock()
{
int expected = 0;
return m_lock.compare_exchange_strong(expected, 1);
}
private:
CircularQueue<Thread*, ConcurrentThreads> m_blocked_threads;
Atomic<int> m_lock;
};
template <usize ConcurrentThreads> class ScopedKMutexLock
{
public:
ScopedKMutexLock(KMutex<ConcurrentThreads>& lock) : m_lock(lock)
{
m_lock.lock();
}
~ScopedKMutexLock()
{
if (!m_taken_over) m_lock.unlock();
}
ScopedKMutexLock(const ScopedKMutexLock&) = delete;
ScopedKMutexLock(ScopedKMutexLock&&) = delete;
KMutex<ConcurrentThreads>& take_over()
{
m_taken_over = true;
return m_lock;
}
private:
KMutex<ConcurrentThreads>& m_lock;
bool m_taken_over { false };
};

View File

@ -1,6 +1,5 @@
#include "Log.h"
#include "arch/CPU.h"
#include "arch/PCI.h"
#include "arch/Timer.h"
#include "boot/Init.h"
#include "config.h"
@ -11,6 +10,10 @@
#include "thread/Scheduler.h"
#include <luna/Units.h>
#ifdef ARCH_X86_64
#include "arch/x86_64/disk/ATA.h"
#endif
extern void set_host_name(StringView);
void reap_thread()
@ -53,12 +56,9 @@ Result<void> init()
auto reap = Scheduler::new_kernel_thread(reap_thread, "[reap]").release_value();
Scheduler::set_reap_thread(reap);
PCI::scan(
[](const PCI::Device& device) {
kinfoln("Found PCI mass storage device %.4x:%.4x, at address %u:%u:%u", device.id.vendor, device.id.device,
device.address.bus, device.address.slot, device.address.function);
},
{ .klass = 1 });
#ifdef ARCH_X86_64
ATA::Controller::scan();
#endif
// Disable console logging before transferring control to userspace.
setup_log(log_debug_enabled(), log_serial_enabled(), false);

View File

@ -1,5 +1,6 @@
#pragma once
#include <luna/CString.h>
#include <luna/StringView.h>
#include <luna/Types.h>
template <usize Size> class StaticString
@ -24,12 +25,27 @@ template <usize Size> class StaticString
m_length = length;
}
void adopt(StringView string)
{
usize length = strlcpy(m_buffer, string.chars(),
string.length() > sizeof(m_buffer) ? sizeof(m_buffer) : string.length() + 1);
if (length > Size) { m_length = Size; }
else
m_length = length;
}
StaticString<Size>& operator=(const char* string)
{
adopt(string);
return *this;
}
StaticString<Size>& operator=(StringView string)
{
adopt(string);
return *this;
}
template <usize OtherSize> StaticString<Size>& operator=(const StaticString<OtherSize>& string)
{
if constexpr (OtherSize == Size)
@ -46,11 +62,38 @@ template <usize Size> class StaticString
return m_buffer;
}
char* data()
{
return m_buffer;
}
void set_length(usize len)
{
m_length = len;
}
usize length() const
{
return m_length;
}
void trim(StringView delim)
{
isize i = (isize)m_length;
while (i--)
{
char c = m_buffer[i];
if (!strchr(delim.chars(), c)) break;
}
i++;
m_buffer[i] = '\0';
m_length = (usize)i;
}
private:
char m_buffer[Size + 1];
usize m_length { 0 };