#include "ELF.h" #include "InitRD.h" #include "Log.h" #include "arch/CPU.h" #include "arch/MMU.h" #include "arch/PCI.h" #include "arch/Timer.h" #include "boot/Init.h" #include "config.h" #include "memory/Heap.h" #include "memory/KernelVM.h" #include "memory/MemoryManager.h" #include "thread/Scheduler.h" #include #include #include void heap_thread() { CPU::disable_interrupts(); dump_heap_usage(); kdbgln("Kernel uses %lu vm pages", KernelVM::used() / ARCH_PAGE_SIZE); kernel_exit(); } void reap_thread() { while (true) { CPU::disable_interrupts(); auto dying_threads = Scheduler::check_for_dying_threads(); CPU::enable_interrupts(); dying_threads.consume([](Thread* thread) { Scheduler::reap_thread(thread); }); kernel_sleep(250); } } Result init() { kinfoln("Starting Moon %s, built on %s at %s", MOON_VERSION, __DATE__, __TIME__); kinfoln("Current platform: %s", CPU::platform_string()); kinfoln("Current processor: %s", CPU::identify().value_or("(unknown)")); Timer::init(); kinfoln("Total memory: %s", to_dynamic_unit(MemoryManager::total()).release_value().chars()); kinfoln("Free memory: %s", to_dynamic_unit(MemoryManager::free()).release_value().chars()); kinfoln("Used memory: %s", to_dynamic_unit(MemoryManager::used()).release_value().chars()); kinfoln("Reserved memory: %s", to_dynamic_unit(MemoryManager::reserved()).release_value().chars()); Thread::init(); Scheduler::init(); TarStream::Entry entry; while (TRY(g_initrd.read_next_entry(entry))) { if (entry.type == TarStream::EntryType::RegularFile) { kinfoln("Found file %s in initial ramdisk, of size %s and mode %#ho", entry.name, to_dynamic_unit(entry.size).release_value().chars(), entry.mode); if (!strcmp(entry.name, "bin/app")) { TRY(Scheduler::new_userspace_thread(entry, g_initrd)); } } } TRY(Scheduler::new_kernel_thread(heap_thread)); TRY(Scheduler::new_kernel_thread(reap_thread)); PCI::scan( [](const PCI::Device& device) { kinfoln("Found PCI mass storage device %.4x:%.4x, at address %u:%u:%u", device.id.vendor, device.id.device, device.address.bus, device.address.slot, device.address.function); }, { .klass = 1 }); CPU::platform_finish_init(); // Disable console logging before transferring control to userspace. setup_log(log_debug_enabled(), log_serial_enabled(), false); CPU::enable_interrupts(); return {}; } [[noreturn]] void init_wrapper() { auto rc = init(); if (rc.has_error()) kerrorln("Runtime error: %s", rc.error_string()); CPU::idle_loop(); } static constexpr u64 BOOTSTRAP_STACK_PAGES = 8; // FIXME: Reclaim this memory as soon as we leave the init task (so as soon as the Scheduler runs a task switch) static u64 allocate_initial_kernel_stack() { u64 address = MemoryManager::alloc_for_kernel(BOOTSTRAP_STACK_PAGES + 1, MMU::ReadWrite | MMU::NoExecute).value(); // First page is a guard page, the rest is stack. MMU::unmap(address); // Unmap (without deallocating VM) one guard page so that attempts to access it fail with a // non-present page fault. kdbgln("stack guard page: %p", (void*)address); // The actual stack. Stack stack { address + ARCH_PAGE_SIZE, BOOTSTRAP_STACK_PAGES * ARCH_PAGE_SIZE }; return stack.top(); } extern "C" [[noreturn]] void _start() { Init::check_magic(); Init::early_init(); u64 bootstrap_stack_top = allocate_initial_kernel_stack(); CPU::bootstrap_switch_stack(bootstrap_stack_top, (void*)init_wrapper); }