#include "ELF.h" #include "InitRD.h" #include "Log.h" #include "arch/CPU.h" #include "arch/MMU.h" #include "arch/PCI.h" #include "arch/Timer.h" #include "boot/Init.h" #include "config.h" #include "fs/devices/DeviceRegistry.h" #include "fs/tmpfs/FileSystem.h" #include "memory/Heap.h" #include "memory/KernelVM.h" #include "memory/MemoryManager.h" #include "thread/Scheduler.h" #include "video/Framebuffer.h" #include "video/TextConsole.h" #include #include #include void reap_thread() { while (true) { CPU::disable_interrupts(); auto dying_threads = Scheduler::check_for_dying_threads(); CPU::enable_interrupts(); dying_threads.consume([](Thread* thread) { Scheduler::reap_thread(thread); }); kernel_sleep(250); } } static void identify_processor() { kinfoln("Current platform: %s", CPU::platform_string()); kinfoln("Current processor: %s", CPU::identify().value_or("(unknown)")); } static void identify_memory() { kinfoln("Total memory: %s", to_dynamic_unit(MemoryManager::total()).release_value().chars()); kinfoln("Free memory: %s", to_dynamic_unit(MemoryManager::free()).release_value().chars()); kinfoln("Used memory: %s", to_dynamic_unit(MemoryManager::used()).release_value().chars()); kinfoln("Reserved memory: %s", to_dynamic_unit(MemoryManager::reserved()).release_value().chars()); } static Result try_init_vfs() { VFS::root_fs = TRY(TmpFS::FileSystem::create()); TRY(DeviceRegistry::init()); InitRD::populate_vfs(); return {}; } static void init_vfs() { try_init_vfs().release_value(); } static Result try_init_userspace() { auto init = TRY(VFS::resolve_path("/bin/init")); TRY(Scheduler::new_userspace_thread(init)); return {}; } static void init_userspace() { try_init_userspace().release_value(); } static void create_reaper() { Scheduler::new_kernel_thread(reap_thread).release_value(); } static void scan_pci() { PCI::scan( [](const PCI::Device& device) { kinfoln("Found PCI mass storage device %.4x:%.4x, at address %u:%u:%u", device.id.vendor, device.id.device, device.address.bus, device.address.slot, device.address.function); }, { .klass = 1 }); } static void transfer_control() { // Disable console logging before transferring control to userspace. setup_log(log_debug_enabled(), log_serial_enabled(), false); CPU::enable_interrupts(); } struct SplashAction { const char* message; void (*action)(void); }; constexpr SplashAction actions[] = { { "Identify Processor", identify_processor }, { "Initialize Timer", Timer::init }, { "Identify System Memory", identify_memory }, { "Initialize Threads", Thread::init }, { "Initialize Scheduler", Scheduler::init }, { "Initialize File System", init_vfs }, { "Initialize Userspace", init_userspace }, { "Create Reaper Thread", create_reaper }, { "Find Available Devices", scan_pci }, { "Final CPU Initialization", CPU::platform_finish_init }, { "Start Userspace", transfer_control }, }; static constexpr u32 WHITE = 0xffffffff; static constexpr u32 RED = 0xffff0000; static constexpr u32 BLACK = 0xff000000; static void update_splash(const char* message, u32 current, u32 total) { const u32 line_height = Framebuffer::height() / 2; const u32 line_begin = 100; const u32 line_length = Framebuffer::width() - 200; if (current != total) { const u32 line_completed = (line_length / total) * current; Framebuffer::rect(line_begin, line_height, line_completed, 2, WHITE); Framebuffer::rect(line_begin + line_completed, line_height, line_length - line_completed, 2, RED); } else { Framebuffer::rect(line_begin, line_height, line_length, 2, WHITE); } Framebuffer::rect(line_begin, line_height + 20, line_length, 16, BLACK); TextConsole::move_to(Framebuffer::width() / 2 - 100, line_height + 20); TextConsole::printf("%s (%d%%)", message, (100 / total) * current).release_value(); TextConsole::move_to(0, 0); for (int i = 0; i < 3000000; i++) CPU::pause(); } Result init() { kinfoln("Starting Moon %s, built on %s at %s", MOON_VERSION, __DATE__, __TIME__); constexpr usize total_actions = sizeof(actions) / sizeof(actions[0]); for (usize i = 0; i < total_actions; i++) { #ifndef DEBUG_MODE update_splash(actions[i].message, (u32)i, (u32)(total_actions - 1)); #else (void)update_splash; #endif actions[i].action(); } return {}; } [[noreturn]] void init_wrapper() { auto rc = init(); if (rc.has_error()) kerrorln("Runtime error: %s", rc.error_string()); CPU::idle_loop(); } static constexpr u64 BOOTSTRAP_STACK_PAGES = 8; // FIXME: Reclaim this memory as soon as we leave the init task (so as soon as the Scheduler runs a task switch) static u64 allocate_initial_kernel_stack() { u64 address = MemoryManager::alloc_for_kernel(BOOTSTRAP_STACK_PAGES + 1, MMU::ReadWrite | MMU::NoExecute).value(); // First page is a guard page, the rest is stack. MMU::unmap(address); // Unmap (without deallocating VM) one guard page so that attempts to access it fail with a // non-present page fault. kdbgln("stack guard page: %p", (void*)address); // The actual stack. Stack stack { address + ARCH_PAGE_SIZE, BOOTSTRAP_STACK_PAGES * ARCH_PAGE_SIZE }; return stack.top(); } extern "C" [[noreturn]] void _start() { Init::check_magic(); Init::early_init(); u64 bootstrap_stack_top = allocate_initial_kernel_stack(); CPU::bootstrap_switch_stack(bootstrap_stack_top, (void*)init_wrapper); }