Luna/kernel/src/main.cpp
apio 0985b75057
All checks were successful
continuous-integration/drone/push Build is passing
kernel: Add a guard page to the bootstrap stack so that we can catch more stack overflows
2023-02-25 17:42:32 +01:00

121 lines
3.7 KiB
C++

#include "ELF.h"
#include "InitRD.h"
#include "Log.h"
#include "arch/CPU.h"
#include "arch/MMU.h"
#include "arch/PCI.h"
#include "arch/Timer.h"
#include "boot/Init.h"
#include "config.h"
#include "memory/Heap.h"
#include "memory/KernelVM.h"
#include "memory/MemoryManager.h"
#include "thread/Scheduler.h"
#include <luna/CString.h>
#include <luna/Result.h>
#include <luna/Units.h>
void heap_thread()
{
CPU::disable_interrupts();
dump_heap_usage();
kdbgln("Kernel uses %lu vm pages", KernelVM::used() / ARCH_PAGE_SIZE);
kernel_exit();
}
void reap_thread()
{
while (true)
{
CPU::disable_interrupts();
auto dying_threads = Scheduler::check_for_dying_threads();
CPU::enable_interrupts();
dying_threads.consume([](Thread* thread) { Scheduler::reap_thread(thread); });
kernel_sleep(250);
}
}
Result<void> init()
{
kinfoln("Starting Moon %s, built on %s at %s", MOON_VERSION, __DATE__, __TIME__);
kinfoln("Current platform: %s", CPU::platform_string());
kinfoln("Current processor: %s", CPU::identify().value_or("(unknown)"));
Timer::init();
kinfoln("Total memory: %s", to_dynamic_unit(MemoryManager::total()).release_value().chars());
kinfoln("Free memory: %s", to_dynamic_unit(MemoryManager::free()).release_value().chars());
kinfoln("Used memory: %s", to_dynamic_unit(MemoryManager::used()).release_value().chars());
kinfoln("Reserved memory: %s", to_dynamic_unit(MemoryManager::reserved()).release_value().chars());
Thread::init();
Scheduler::init();
TarStream::Entry entry;
while (TRY(g_initrd.read_next_entry(entry)))
{
if (entry.type == TarStream::EntryType::RegularFile)
{
kinfoln("Found file %s in initial ramdisk, of size %s and mode %#ho", entry.name,
to_dynamic_unit(entry.size).release_value().chars(), entry.mode);
if (!strcmp(entry.name, "bin/app")) { TRY(Scheduler::new_userspace_thread(entry, g_initrd)); }
}
}
TRY(Scheduler::new_kernel_thread(heap_thread));
TRY(Scheduler::new_kernel_thread(reap_thread));
PCI::scan(
[](const PCI::Device& device) {
kinfoln("Found PCI mass storage device %.4x:%.4x, at address %u:%u:%u", device.id.vendor, device.id.device,
device.address.bus, device.address.slot, device.address.function);
},
{ .klass = 1 });
CPU::platform_finish_init();
// Disable console logging before transferring control to userspace.
setup_log(log_debug_enabled(), log_serial_enabled(), false);
CPU::enable_interrupts();
return {};
}
[[noreturn]] void init_wrapper()
{
auto rc = init();
if (rc.has_error()) kerrorln("Runtime error: %s", rc.error_string());
CPU::idle_loop();
}
static constexpr u64 BOOTSTRAP_STACK_PAGES = 8;
// FIXME: Reclaim this memory as soon as we leave the init task (so as soon as the Scheduler runs a task switch)
static u64 allocate_initial_kernel_stack()
{
u64 address = MemoryManager::alloc_for_kernel(BOOTSTRAP_STACK_PAGES + 1, MMU::ReadWrite | MMU::NoExecute).value();
// First page is a guard page, the rest is stack.
MMU::unmap(address); // Unmap (without deallocating VM) one guard page so that attempts to access it fail with a
// non-present page fault.
kdbgln("stack guard page: %p", (void*)address);
// The actual stack.
Stack stack { address + ARCH_PAGE_SIZE, BOOTSTRAP_STACK_PAGES * ARCH_PAGE_SIZE };
return stack.top();
}
extern "C" [[noreturn]] void _start()
{
Init::check_magic();
Init::early_init();
u64 bootstrap_stack_top = allocate_initial_kernel_stack();
CPU::bootstrap_switch_stack(bootstrap_stack_top, (void*)init_wrapper);
}