Luna/kernel/src/main.cpp

198 lines
5.6 KiB
C++

#include "ELF.h"
#include "InitRD.h"
#include "Log.h"
#include "arch/CPU.h"
#include "arch/MMU.h"
#include "arch/PCI.h"
#include "arch/Timer.h"
#include "boot/Init.h"
#include "config.h"
#include "fs/devices/DeviceRegistry.h"
#include "fs/tmpfs/FileSystem.h"
#include "memory/Heap.h"
#include "memory/KernelVM.h"
#include "memory/MemoryManager.h"
#include "thread/Scheduler.h"
#include "video/Framebuffer.h"
#include "video/TextConsole.h"
#include <luna/CString.h>
#include <luna/Result.h>
#include <luna/Units.h>
void reap_thread()
{
while (true)
{
CPU::disable_interrupts();
auto dying_threads = Scheduler::check_for_dying_threads();
CPU::enable_interrupts();
dying_threads.consume([](Thread* thread) { Scheduler::reap_thread(thread); });
kernel_sleep(250);
}
}
static void identify_processor()
{
kinfoln("Current platform: %s", CPU::platform_string());
kinfoln("Current processor: %s", CPU::identify().value_or("(unknown)"));
}
static void identify_memory()
{
kinfoln("Total memory: %s", to_dynamic_unit(MemoryManager::total()).release_value().chars());
kinfoln("Free memory: %s", to_dynamic_unit(MemoryManager::free()).release_value().chars());
kinfoln("Used memory: %s", to_dynamic_unit(MemoryManager::used()).release_value().chars());
kinfoln("Reserved memory: %s", to_dynamic_unit(MemoryManager::reserved()).release_value().chars());
}
static Result<void> try_init_vfs()
{
VFS::root_fs = TRY(TmpFS::FileSystem::create());
TRY(DeviceRegistry::init());
InitRD::populate_vfs();
return {};
}
static void init_vfs()
{
try_init_vfs().release_value();
}
static Result<void> try_init_userspace()
{
auto init = TRY(VFS::resolve_path("/bin/init"));
TRY(Scheduler::new_userspace_thread(init));
return {};
}
static void init_userspace()
{
try_init_userspace().release_value();
}
static void create_reaper()
{
Scheduler::new_kernel_thread(reap_thread).release_value();
}
static void scan_pci()
{
PCI::scan(
[](const PCI::Device& device) {
kinfoln("Found PCI mass storage device %.4x:%.4x, at address %u:%u:%u", device.id.vendor, device.id.device,
device.address.bus, device.address.slot, device.address.function);
},
{ .klass = 1 });
}
static void transfer_control()
{
// Disable console logging before transferring control to userspace.
setup_log(log_debug_enabled(), log_serial_enabled(), false);
CPU::enable_interrupts();
}
struct SplashAction
{
const char* message;
void (*action)(void);
};
constexpr SplashAction actions[] = {
{ "Identify Processor", identify_processor }, { "Initialize Timer", Timer::init },
{ "Identify System Memory", identify_memory }, { "Initialize Threads", Thread::init },
{ "Initialize Scheduler", Scheduler::init }, { "Initialize File System", init_vfs },
{ "Initialize Userspace", init_userspace }, { "Create Reaper Thread", create_reaper },
{ "Find Available Devices", scan_pci }, { "Final CPU Initialization", CPU::platform_finish_init },
{ "Start Userspace", transfer_control },
};
static constexpr u32 WHITE = 0xffffffff;
static constexpr u32 RED = 0xffff0000;
static constexpr u32 BLACK = 0xff000000;
static void update_splash(const char* message, u32 current, u32 total)
{
const u32 line_height = Framebuffer::height() / 2;
const u32 line_begin = 100;
const u32 line_length = Framebuffer::width() - 200;
if (current != total)
{
const u32 line_completed = (line_length / total) * current;
Framebuffer::rect(line_begin, line_height, line_completed, 2, WHITE);
Framebuffer::rect(line_begin + line_completed, line_height, line_length - line_completed, 2, RED);
}
else { Framebuffer::rect(line_begin, line_height, line_length, 2, WHITE); }
Framebuffer::rect(line_begin, line_height + 20, line_length, 16, BLACK);
TextConsole::move_to(Framebuffer::width() / 2 - 100, line_height + 20);
TextConsole::printf("%s (%d%%)", message, (100 / total) * current).release_value();
TextConsole::move_to(0, 0);
for (int i = 0; i < 3000000; i++) CPU::pause();
}
Result<void> init()
{
kinfoln("Starting Moon %s, built on %s at %s", MOON_VERSION, __DATE__, __TIME__);
constexpr usize total_actions = sizeof(actions) / sizeof(actions[0]);
for (usize i = 0; i < total_actions; i++)
{
#ifndef DEBUG_MODE
update_splash(actions[i].message, (u32)i, (u32)(total_actions - 1));
#else
(void)update_splash;
#endif
actions[i].action();
}
return {};
}
[[noreturn]] void init_wrapper()
{
auto rc = init();
if (rc.has_error()) kerrorln("Runtime error: %s", rc.error_string());
CPU::idle_loop();
}
static constexpr u64 BOOTSTRAP_STACK_PAGES = 8;
// FIXME: Reclaim this memory as soon as we leave the init task (so as soon as the Scheduler runs a task switch)
static u64 allocate_initial_kernel_stack()
{
u64 address = MemoryManager::alloc_for_kernel(BOOTSTRAP_STACK_PAGES + 1, MMU::ReadWrite | MMU::NoExecute).value();
// First page is a guard page, the rest is stack.
MMU::unmap(address); // Unmap (without deallocating VM) one guard page so that attempts to access it fail with a
// non-present page fault.
kdbgln("stack guard page: %p", (void*)address);
// The actual stack.
Stack stack { address + ARCH_PAGE_SIZE, BOOTSTRAP_STACK_PAGES * ARCH_PAGE_SIZE };
return stack.top();
}
extern "C" [[noreturn]] void _start()
{
Init::check_magic();
Init::early_init();
u64 bootstrap_stack_top = allocate_initial_kernel_stack();
CPU::bootstrap_switch_stack(bootstrap_stack_top, (void*)init_wrapper);
}