Some pages, such as framebuffer pages, are not physical memory frames reserved for the current process.
Some, such as the framebuffer, may be shared between all processes.
Yet, on exit() or on exec(), a process frees all frames mapped into its address spaces.
And on fork(), it copies all data between frames. So how could we map framebuffers.
Simple: we use one of the bits in page table entries which are available to the OS, and mark whether that page is owned by the current process.
If it is owned, it will be:
- Freed on address space destruction
- Its data will be copied to a new page owned by the child process on fork()
If it is not owned, it will be:
- Left alone on address space destruction
- On fork(), the child's virtual page will be mapped to the same physical frame as the parent
This still needs a bit more work, such as keeping a reference of how many processes use a page to free it when all processes using it exit/exec.
This should be done for MAP_SHARED mappings, for example, since they are not permanent forever,
unlike the framebuffer for example.
This function is a Luna alternative to fork() and exec().
Why? Simply because I can't figure out for the life of me how to implement a working fork().
So meanwhile, we have spawn() as a replacement. exec() still exists, though.
If a section needs to be mapped at 0x50f50 and its size is 0x200, then that address space exceeds one page.
But since 0x200 is less than one page, we only map one page.
If we count the offset, 0xf50 + 0x200 need two pages. So we can map the right amount of memory.
We should start to drop the old InitRD API, which only allows for files to be loaded from the initrd, and which forces pathnames to be relative (bin/init)
With VFS, we can load any kind of file from any kind of filesystem, and using paths that make sense (/bin/init)
This struct allows us to keep track of what memory is used by the loaded executable. For some reason, freeing this memory when the task exits triggers a kernel page fault, so I'm not doing that right now.