#include "thread/Scheduler.h" #include "ELF.h" #include "Log.h" #include "arch/CPU.h" #include "arch/MMU.h" #include "memory/MemoryManager.h" #include "thread/ThreadImage.h" #include #include #include static Thread g_idle; static Thread* g_current = nullptr; static const usize TICKS_PER_TIMESLICE = 20; namespace Scheduler { void init() { g_idle.id = 0; g_idle.init_regs_kernel(); g_idle.set_ip((u64)CPU::idle_loop); g_idle.state = ThreadState::Idle; g_idle.is_kernel = true; g_idle.parent_id = 0; g_idle.name = "[idle]"; g_idle.ticks_left = 1; // Map some stack for the idle task u64 idle_stack_vm = MemoryManager::alloc_for_kernel(1, MMU::NoExecute | MMU::ReadWrite) .expect_value("Error while setting up the idle task, cannot continue"); Stack idle_stack { idle_stack_vm, ARCH_PAGE_SIZE }; g_idle.set_sp(idle_stack.top()); g_idle.stack = idle_stack; kinfoln("Created idle thread: id %lu with ip %#lx and sp %#lx", g_idle.id, g_idle.ip(), g_idle.sp()); g_current = &g_idle; } Thread* current() { return g_current; } Thread* idle() { return &g_idle; } Result new_kernel_thread_impl(Thread* thread, const char* name) { // If anything fails, make sure to clean up. auto guard = make_scope_guard([&] { delete thread; }); const u64 thread_stack_vm = TRY(MemoryManager::alloc_for_kernel(4, MMU::NoExecute | MMU::ReadWrite)); guard.deactivate(); const Stack thread_stack { thread_stack_vm, ARCH_PAGE_SIZE * 4 }; thread->set_sp(thread_stack.top()); thread->stack = thread_stack; thread->parent_id = 0; thread->name = name; thread->is_kernel = true; thread->auth = Credentials { .uid = 0, .euid = 0, .suid = 0, .gid = 0, .egid = 0, .sgid = 0 }; g_threads.append(thread); thread->state = ThreadState::Runnable; kinfoln("Created kernel thread: id %lu with ip %#lx and sp %#lx", thread->id, thread->ip(), thread->sp()); return {}; } Result new_kernel_thread(u64 address, const char* name) { Thread* const thread = TRY(new_thread()); thread->init_regs_kernel(); thread->set_ip(address); return new_kernel_thread_impl(thread, name); } Result new_kernel_thread(void (*func)(void), const char* name) { Thread* const thread = TRY(new_thread()); thread->init_regs_kernel(); thread->set_ip((u64)func); return new_kernel_thread_impl(thread, name); } Result new_kernel_thread(void (*func)(void*), void* arg, const char* name) { Thread* const thread = TRY(new_thread()); thread->init_regs_kernel(); thread->set_ip((u64)func); thread->set_arguments((u64)arg, 0, 0, 0); return new_kernel_thread_impl(thread, name); } Result new_userspace_thread(SharedPtr inode, const char* name) { Thread* const thread = TRY(make()); thread->state = ThreadState::None; thread->is_kernel = false; thread->id = 1; thread->name = name; thread->parent_id = 0; thread->auth = Credentials { .uid = 0, .euid = 0, .suid = 0, .gid = 0, .egid = 0, .sgid = 0 }; Vector args; auto name_string = TRY(String::from_cstring(name)); TRY(args.try_append(move(name_string))); Vector env; auto guard = make_scope_guard([&] { delete thread; }); auto image = TRY(ThreadImage::try_load_from_elf(inode)); u64 argv = TRY(image->push_string_vector_on_stack(args)); u64 envp = TRY(image->push_string_vector_on_stack(env)); guard.deactivate(); image->apply(thread); thread->set_arguments(args.size(), argv, env.size(), envp); kinfoln("Created userspace thread: id %lu with ip %#.16lx and sp %#.16lx (ksp %#lx)", thread->id, thread->ip(), thread->sp(), thread->kernel_stack.top()); g_threads.append(thread); return thread; } void add_thread(Thread* thread) { g_threads.append(thread); } void reap_thread(Thread* thread) { CPU::disable_interrupts(); kinfoln("reap: reaping thread with id %zu", thread->id); if (thread->is_kernel) { auto stack = thread->stack; MemoryManager::unmap_owned_and_free_vm(stack.bottom(), stack.bytes() / ARCH_PAGE_SIZE).release_value(); } else { auto stack = thread->kernel_stack; MemoryManager::unmap_owned_and_free_vm(stack.bottom(), stack.bytes() / ARCH_PAGE_SIZE).release_value(); } if (!thread->is_kernel) MMU::delete_userspace_page_directory(thread->directory); delete thread; CPU::enable_interrupts(); } Thread* pick_task() { Thread* old = g_current; if (old->is_idle()) { auto maybe_last = g_threads.last(); if (!maybe_last.has_value()) // No threads!! return &g_idle; g_current = old = maybe_last.value(); } bool has_found_thread = false; do { auto maybe_next = g_threads.next(g_current); if (!maybe_next.has_value()) g_current = g_threads.expect_first(); else g_current = maybe_next.value(); if (g_current->state == ThreadState::Runnable) { has_found_thread = true; break; } } while (g_current != old); if (!has_found_thread) g_current = &g_idle; return g_current; } void generic_switch_context(Thread* old_thread, Thread* new_thread, Registers* regs) { if (old_thread != new_thread) { switch_context(old_thread, new_thread, regs); if (!old_thread->is_kernel) old_thread->fp_data.save(); if (!new_thread->is_kernel) { MMU::switch_page_directory(new_thread->directory); CPU::switch_kernel_stack(new_thread->kernel_stack.top()); new_thread->fp_data.restore(); } } if (new_thread->is_idle()) { new_thread->ticks_left = 1; // The idle task only runs for 1 tick so we can check for new runnable tasks // as fast as possible. } else new_thread->ticks_left = TICKS_PER_TIMESLICE; } void switch_task(Registers* regs) { Thread* old_thread = g_current; Thread* new_thread = pick_task(); generic_switch_context(old_thread, new_thread, regs); } void invoke(Registers* regs) { CPU::disable_interrupts(); g_current->ticks++; if (is_in_kernel(regs)) g_current->ticks_in_kernel++; else g_current->ticks_in_user++; g_current->ticks_left--; for (auto* const thread : g_threads) { if (thread->state == ThreadState::Sleeping) { if (--thread->sleep_ticks_left == 0) thread->state = ThreadState::Runnable; } } if (!g_current->ticks_left) switch_task(regs); } LinkedList check_for_dying_threads() { LinkedList result; g_threads.delayed_for_each([&](Thread* thread) { if (thread->state == ThreadState::Dying) { g_threads.remove(thread); result.append(thread); } }); return result; } Option find_by_pid(pid_t pid) { for (auto* const thread : g_threads) { if (thread->id == (u64)pid && thread->state != ThreadState::Dying) return thread; } return {}; } bool has_children(Thread* thread) { bool result { false }; for_each_child(thread, [&](Thread*) { result = true; return false; }); return result; } Option find_exited_child(Thread* thread) { Option result; for_each_child(thread, [&](Thread* child) { if (!result.has_value() && child->state == ThreadState::Exited) { result = child; return false; } return true; }); return result; } } void kernel_sleep(u64 ms) { g_current->sleep_ticks_left = ms; g_current->state = ThreadState::Sleeping; kernel_yield(); } [[noreturn]] void kernel_exit() { g_current->state = ThreadState::Dying; kernel_yield(); unreachable(); }