#ifdef MM_DEBUG #define MODULE "mm" #include "log/Log.h" #endif #include "assert.h" #include "memory/KernelHeap.h" #include "memory/MemoryManager.h" #include "memory/PMM.h" #include "memory/VMM.h" void MemoryManager::init() { PMM::init(); kernelVMM.init(); } void* MemoryManager::get_mapping(void* physicalAddress, int flags) { uint64_t virtualAddress = KernelHeap::request_virtual_page(); if (!virtualAddress) { #ifdef MM_DEBUG kwarnln("No kernel heap space (virtual address space from -128M to -64M) left"); #endif return 0; } kernelVMM.map(virtualAddress, (uint64_t)physicalAddress, flags); return (void*)virtualAddress; } void* MemoryManager::get_unaligned_mapping(void* physicalAddress, int flags) { uint64_t offset = (uint64_t)physicalAddress % 4096; uint64_t virtualAddress = KernelHeap::request_virtual_page(); if (!virtualAddress) { #ifdef MM_DEBUG kwarnln("No kernel heap space (virtual address space from -128M to -64M) left"); #endif return 0; } kernelVMM.map(virtualAddress, (uint64_t)physicalAddress - offset, flags); return (void*)(virtualAddress + offset); } void* MemoryManager::get_unaligned_mappings(void* physicalAddress, uint64_t count, int flags) { if (!count) return 0; if (count == 1) return get_unaligned_mapping(physicalAddress, flags); uint64_t offset = (uint64_t)physicalAddress % 4096; uint64_t virtualAddress = KernelHeap::request_virtual_pages(count); if (!virtualAddress) { #ifdef MM_DEBUG kwarnln("Not enough contiguous pages (%ld) left in the kernel heap space (virtual address space from -128M to " "-64M)", count); #endif return 0; } for (uint64_t i = 0; i < count; i++) { kernelVMM.map(virtualAddress + (i * 4096), ((uint64_t)physicalAddress - offset) + (i * 4096), flags); } return (void*)(virtualAddress + offset); } void MemoryManager::release_unaligned_mapping(void* mapping) { uint64_t offset = (uint64_t)mapping % 4096; kernelVMM.unmap((uint64_t)mapping - offset); KernelHeap::free_virtual_page((uint64_t)mapping - offset); } void MemoryManager::release_unaligned_mappings(void* mapping, uint64_t count) { if (!count) return; if (count == 1) return release_unaligned_mapping(mapping); uint64_t offset = (uint64_t)mapping % 4096; KernelHeap::free_virtual_pages((uint64_t)mapping - offset, count); for (uint64_t i = 0; i < count; i++) { kernelVMM.unmap(((uint64_t)mapping - offset) + (i * 4096)); } } void MemoryManager::release_mapping(void* mapping) { kernelVMM.unmap((uint64_t)mapping); KernelHeap::free_virtual_page((uint64_t)mapping); } void* MemoryManager::get_page(int flags) { uint64_t virtualAddress = KernelHeap::request_virtual_page(); if (!virtualAddress) { #ifdef MM_DEBUG kwarnln("No kernel heap space (virtual address space from -128M to -64M) left"); #endif return 0; } return get_page_at(virtualAddress, flags); } void* MemoryManager::get_page_at(uint64_t addr, int flags) { void* physicalAddress = PMM::request_page(); if (PMM_DID_FAIL(physicalAddress)) { #ifdef MM_DEBUG kwarnln("OOM while allocating one page of memory. this is not good..."); #endif return 0; } kernelVMM.map(addr, (uint64_t)physicalAddress, flags); return (void*)addr; } void MemoryManager::release_page(void* page) { uint64_t physicalAddress = kernelVMM.getPhysical((uint64_t)page); ASSERT(physicalAddress != UINT64_MAX); // this address is not mapped in the virtual address space... kernelVMM.unmap((uint64_t)page); PMM::free_page((void*)physicalAddress); } void* MemoryManager::get_pages(uint64_t count, int flags) { if (!count) return 0; if (count == 1) return get_page(flags); #ifdef MM_DEBUG kdbgln("allocating several pages (%ld)", count); #endif uint64_t virtualAddress = KernelHeap::request_virtual_pages(count); if (!virtualAddress) { #ifdef MM_DEBUG kwarnln("No kernel heap space (virtual address space from -128M to -64M) left"); #endif return 0; // Out of virtual address in the kernel heap range (-128M to -64M). This should be difficult to // achieve... } return get_pages_at(virtualAddress, count, flags); } void* MemoryManager::get_pages_at(uint64_t addr, uint64_t count, int flags) { if (!count) return 0; if (count == 1) return get_page_at(addr, flags); #ifdef MM_DEBUG kdbgln("allocating several pages (%ld), at address %ld", count, addr); #endif for (uint64_t i = 0; i < count; i++) { void* physicalAddress = PMM::request_page(); if (PMM_DID_FAIL(physicalAddress)) // OOM: No physical memory available! Since this might be at the end of a // long allocation, we should be able to recover most of it and allocate a // smaller range, so this might not be fatal. { #ifdef MM_DEBUG kwarnln("OOM while allocating page %ld of memory. this might be recoverable..."); #endif return 0; } kernelVMM.map(addr + (i * 4096), (uint64_t)physicalAddress, flags); #ifdef MM_DEBUG kdbgln("allocating virtual %lx, physical %lx", virtualAddress + (i * 4096), (uint64_t)physicalAddress); #endif } return (void*)addr; } void MemoryManager::release_pages(void* pages, uint64_t count) { if (!count) return; if (count == 1) return release_page(pages); #ifdef MM_DEBUG kdbgln("releasing several pages (%ld)", count); #endif for (uint64_t i = 0; i < count; i++) { void* page = (void*)((uint64_t)pages + (i * 4096)); uint64_t physicalAddress = kernelVMM.getPhysical((uint64_t)page); ASSERT(physicalAddress != UINT64_MAX); kernelVMM.unmap((uint64_t)page); #ifdef MM_DEBUG kdbgln("releasing virtual %lx, physical %lx", (uint64_t)page, physicalAddress); #endif PMM::free_page((void*)physicalAddress); } KernelHeap::free_virtual_pages((uint64_t)pages, count); }