515 lines
15 KiB
C++

#include "arch/x86_64/disk/ATA.h"
#include "Log.h"
#include "arch/Serial.h"
#include "arch/Timer.h"
#include "arch/x86_64/IO.h"
#include "memory/MemoryManager.h"
#include <luna/SafeArithmetic.h>
#include <luna/Vector.h>
SharedPtr<ATA::Controller> g_controller;
static void irq_handler(Registers* regs, void* ctx)
{
((ATA::Channel*)ctx)->irq_handler(regs);
}
static usize copy_ata_string(char* out, u16* in, usize size)
{
for (usize i = 0; i < size; i += 2)
{
u16 val = in[i / 2];
out[i] = (u8)(val >> 8);
out[i + 1] = (u8)(val & 0xff);
}
out[size + 1] = '\0';
return size;
}
namespace ATA
{
Result<void> Controller::scan()
{
// FIXME: Propagate errors.
PCI::scan(
[](const PCI::Device& device) {
if (!g_controller)
{
auto controller = adopt_shared_if_nonnull(new (std::nothrow) Controller(device)).release_value();
kinfoln("ata: Found ATA controller on PCI bus (%x:%x:%x)", device.address.bus,
device.address.function, device.address.slot);
if (controller->initialize()) g_controller = controller;
}
},
{ .klass = 1, .subclass = 1 });
if (!g_controller) kwarnln("ata: No ATA controller found.");
return {};
}
bool Controller::initialize()
{
if (!m_primary_channel.initialize()) return false;
return m_secondary_channel.initialize();
}
Controller::Controller(const PCI::Device& device)
: m_device(device), m_primary_channel(this, 0, {}), m_secondary_channel(this, 1, {})
{
}
Channel::Channel(Controller* controller, u8 channel_index, Badge<Controller>)
: m_controller(controller), m_channel_index(channel_index)
{
}
u8 Channel::read_register(Register reg)
{
return IO::inb(m_io_base + (u16)reg);
}
u16 Channel::read_data()
{
return IO::inw(m_io_base + (u16)Register::Data);
}
void Channel::write_data(u16 value)
{
IO::outw(m_io_base + (u16)Register::Data, value);
}
void Channel::write_register(Register reg, u8 value)
{
IO::outb(m_io_base + (u16)reg, value);
}
u8 Channel::read_control(ControlRegister reg)
{
return IO::inb(m_control_base + (u16)reg);
}
void Channel::write_control(ControlRegister reg, u8 value)
{
IO::outb(m_control_base + (u16)reg, value);
}
u8 Channel::read_bm(BusmasterRegister reg)
{
return IO::inb(m_busmaster_base + (u16)reg);
}
void Channel::write_bm(BusmasterRegister reg, u8 value)
{
IO::outb(m_busmaster_base + (u16)reg, value);
}
u32 Channel::read_prdt_address()
{
return IO::inl(m_busmaster_base + (u16)BusmasterRegister::PRDTAddress);
}
void Channel::write_prdt_address(u32 value)
{
IO::outl(m_busmaster_base + (u16)BusmasterRegister::PRDTAddress, value);
}
void Channel::delay_400ns()
{
// FIXME: We should use kernel_sleep(), but it doesn't support nanosecond granularity.
for (int i = 0; i < 14; i++) { read_control(ControlRegister::AltStatus); }
}
void Channel::select(u8 drive)
{
if (drive == m_current_drive) return;
u8 value = (drive << 4) | 0xa0;
write_register(Register::DriveSelect, value);
delay_400ns();
m_current_drive = drive;
}
void Channel::irq_handler(Registers*)
{
// FIXME: Read the Busmaster register to make sure the IRQ is for this channel.
// FIXME: Also read it in case there was a DMA read error.
if (m_current_drive < 2 && m_drives[m_current_drive]) m_drives[m_current_drive]->irq_handler();
m_thread->wake_up();
}
void Channel::wait_for_irq()
{
m_thread = Scheduler::current();
kernel_wait_for_event();
}
bool Channel::wait_for_irq_or_timeout(u64 timeout)
{
m_thread = Scheduler::current();
kernel_sleep(timeout);
return m_thread->sleep_ticks_left;
}
bool Channel::wait_for_reg_set(Register reg, u8 value, u64 timeout)
{
u64 begin = Timer::ticks_ms();
while (true)
{
u8 reg_value = read_register(reg);
if (reg_value & value) return true;
if ((Timer::ticks_ms() - begin) >= timeout) return false;
kernel_sleep(1);
}
}
bool Channel::wait_for_reg_clear(Register reg, u8 value, u64 timeout)
{
u64 begin = Timer::ticks_ms();
while (true)
{
u8 reg_value = read_register(reg);
if ((reg_value & value) == 0) return true;
if ((Timer::ticks_ms() - begin) >= timeout) return false;
kernel_sleep(1);
}
}
Result<void> Channel::wait_until_ready()
{
if (!wait_for_reg_clear(Register::Status, SR_Busy, 1000))
{
kwarnln("ata: Drive %d:%d timed out (BSY)", m_channel_index, m_current_drive);
return err(EIO);
}
if (!wait_for_reg_set(Register::Status, SR_DataRequestReady | SR_Error, 1000))
{
kwarnln("ata: Drive %d:%d timed out (DRQ)", m_channel_index, m_current_drive);
return err(EIO);
}
u8 status = read_register(Register::Status);
if (status & SR_Error)
{
kwarnln("ata: An error occurred in drive %d:%d while waiting for data to become available", m_channel_index,
m_current_drive);
return err(EIO);
}
return {};
}
bool Channel::initialize()
{
int offset = m_channel_index ? 2 : 0;
m_is_pci_native_mode = m_controller->device().type.prog_if & (1 << offset);
u16 control_port_base_address;
u16 io_base_address;
if (m_is_pci_native_mode)
{
auto io_base = m_controller->device().getBAR(m_channel_index ? 2 : 0);
if (!io_base.is_iospace())
{
kwarnln("ata: Channel %d's IO base BAR is not in IO space", m_channel_index);
return false;
}
io_base_address = io_base.port();
auto io_control = m_controller->device().getBAR(m_channel_index ? 3 : 1);
if (!io_control.is_iospace())
{
kwarnln("ata: Channel %d's control base BAR is not in IO space", m_channel_index);
return false;
}
control_port_base_address = io_control.port();
}
else
{
io_base_address = m_channel_index ? 0x170 : 0x1f0;
control_port_base_address = m_channel_index ? 0x376 : 0x3f6;
}
m_io_base = io_base_address;
m_control_base = control_port_base_address + 2;
auto io_busmaster = m_controller->device().getBAR(4);
if (!io_busmaster.is_iospace())
{
kwarnln("ata: Channel %d's busmaster base BAR is not in IO space", m_channel_index);
return false;
}
m_busmaster_base = io_busmaster.port() + (u16)(m_channel_index * 8u);
if (m_is_pci_native_mode) m_interrupt_line = PCI::read8(m_controller->device().address, PCI::InterruptLine);
else
m_interrupt_line = m_channel_index ? 15 : 14;
bool ok = CPU::register_interrupt(m_interrupt_line, ::irq_handler, this);
if (!ok)
{
kerrorln("ata: Failed to register IRQ handler for ATA channel %d (IRQ %d)", m_channel_index,
m_interrupt_line);
return false;
}
for (u8 drive = 0; drive < 2; drive++)
{
ScopedKMutexLock<100> lock(m_lock);
select(drive);
if (read_register(Register::Status) == 0)
{
// No drive on this slot.
continue;
}
kinfoln("ata: Channel %d has a drive on slot %d!", m_channel_index, drive);
auto rc = adopt_shared_if_nonnull(new (std::nothrow) Drive(this, drive, {}));
if (rc.has_error())
{
kinfoln("ata: Failed to create drive object: %s", rc.error_string());
return false;
}
m_drives[drive] = rc.release_value();
if (!m_drives[drive]->initialize())
{
m_drives[drive] = {};
return false;
}
}
return true;
}
Drive::Drive(Channel* channel, u8 drive_index, Badge<Channel>) : m_channel(channel), m_drive_index(drive_index)
{
}
bool Drive::identify_ata()
{
m_channel->write_register(Register::Command, m_is_atapi ? CMD_Identify_Packet : CMD_Identify);
m_channel->delay_400ns();
if (!m_channel->wait_for_reg_clear(Register::Status, SR_Busy, 1000))
{
kwarnln("ata: Drive %d timed out clearing SR_Busy (waited for 1000 ms)", m_drive_index);
return false;
}
if (m_channel->read_register(Register::Status) & SR_Error)
{
u8 lbam = m_channel->read_register(Register::LBAMiddle);
u8 lbah = m_channel->read_register(Register::LBAHigh);
if ((lbam == 0x14 && lbah == 0xeb) || (lbam == 0x69 && lbah == 0x96))
{
if (!m_is_atapi)
{
kinfoln("ata: Drive %d is ATAPI, sending IDENTIFY_PACKET command", m_drive_index);
m_is_atapi = true;
return identify_ata();
}
}
kwarnln("ata: IDENTIFY command for drive %d returned error", m_drive_index);
return false;
}
if (!m_channel->wait_for_reg_set(Register::Status, SR_DataRequestReady | SR_Error, 1000))
{
kwarnln("ata: Drive %d timed out setting SR_DataRequestReady (waited for 1000 ms)", m_drive_index);
return false;
}
u8 status = m_channel->read_register(Register::Status);
if (status & SR_Error)
{
kwarnln("ata: IDENTIFY command for drive %d returned error", m_drive_index);
return false;
}
for (usize i = 0; i < 256; i++)
{
u16 data = m_channel->read_data();
m_identify_words[i] = data;
}
return true;
}
bool Drive::initialize()
{
m_channel->select(m_drive_index);
m_channel->write_register(Register::SectorCount, 0);
m_channel->write_register(Register::LBALow, 0);
m_channel->write_register(Register::LBAMiddle, 0);
m_channel->write_register(Register::LBAHigh, 0);
if (!identify_ata()) return false;
m_serial.set_length(copy_ata_string(m_serial.data(), &m_identify_words[10], SERIAL_LEN));
m_revision.set_length(copy_ata_string(m_revision.data(), &m_identify_words[23], REVISION_LEN));
m_model.set_length(copy_ata_string(m_model.data(), &m_identify_words[27], MODEL_LEN));
m_serial.trim(" ");
m_revision.trim(" ");
m_model.trim(" ");
kinfoln("ata: Drive IDENTIFY returned serial='%s', revision='%s' and model='%s'", m_serial.chars(),
m_revision.chars(), m_model.chars());
auto status = m_channel->read_bm(BusmasterRegister::Status);
if (status & BMS_SimplexOnly)
{
kwarnln("ata: Drive %d will not use DMA because of simplex shenanigans", m_drive_index);
m_uses_dma = false;
}
auto frame = MemoryManager::alloc_frame();
if (frame.has_error() || frame.value() > 0xffffffff)
{
kwarnln("ata: Failed to allocate memory below the 32-bit limit for the PRDT");
return false;
}
m_dma_prdt_phys = frame.release_value();
m_dma_prdt = (prdt_entry*)MMU::translate_physical_address(m_dma_prdt_phys);
frame = MemoryManager::alloc_frame();
if (frame.has_error() || frame.value() > 0xffffffff)
{
kwarnln("ata: Failed to allocate memory below the 32-bit limit for DMA memory");
return false;
}
m_dma_mem_phys = frame.release_value();
m_dma_mem = (void*)MMU::translate_physical_address(m_dma_mem_phys);
if (m_is_atapi)
{
atapi_packet packet;
memset(&packet, 0, sizeof(packet));
packet.command_bytes[0] = ATAPI_ReadCapacity;
atapi_read_capacity_reply reply;
if (send_packet_atapi_pio(&packet, &reply, sizeof(reply)).has_error())
{
kwarnln("ata: Failed to send Read Capacity command to ATAPI drive");
return false;
}
m_is_lba48 = true;
// FIXME: This assumes the host machine is little-endian.
u32 last_lba = __builtin_bswap32(reply.last_lba);
u32 sector_size = __builtin_bswap32(reply.sector_size);
m_block_count = last_lba + 1;
m_block_size = sector_size;
}
else
{
if (m_identify_data.big_lba) m_is_lba48 = true;
if (m_is_lba48) m_block_count = m_identify_data.sectors_48;
else
m_block_count = m_identify_data.sectors_28;
// FIXME: Should we check for CHS?
// FIXME: Maybe a different block size is in use? Detect that.
m_block_size = 512;
}
u64 total_capacity;
if (!safe_mul(m_block_count, m_block_size).try_set_value(total_capacity))
{
kwarnln("ata: Drive %d's total capacity is too large", m_drive_index);
return false;
}
kinfoln("ata: Drive %d capacity information: Block Count=%lu, Block Size=%lu, Total Capacity=%lu",
m_drive_index, m_block_count, m_block_size, total_capacity);
return true;
}
Result<void> Drive::send_packet_atapi_pio(const atapi_packet* packet, void* out, u16 response_size)
{
u8* ptr = (u8*)out;
m_channel->select(m_drive_index);
// We use PIO here.
m_channel->write_register(Register::Features, 0x00);
m_channel->write_register(Register::LBAMiddle, (u8)(response_size & 0xff));
m_channel->write_register(Register::LBAHigh, (u8)(response_size >> 8));
m_channel->write_register(Register::Command, CMD_Packet);
m_channel->delay_400ns();
usize i = 0;
TRY(m_channel->wait_until_ready());
for (int j = 0; j < 6; j++) m_channel->write_data(packet->command_words[j]);
while (i < response_size)
{
TRY(m_channel->wait_until_ready());
usize byte_count =
m_channel->read_register(Register::LBAHigh) << 8 | m_channel->read_register(Register::LBAMiddle);
usize word_count = byte_count / 2;
while (word_count--)
{
u16 value = m_channel->read_data();
ptr[0] = (u8)(value & 0xff);
ptr[1] = (u8)(value >> 8);
ptr += 2;
}
i += byte_count;
}
return {};
}
void Drive::irq_handler()
{
// Clear the IRQ flag.
u8 status = m_channel->read_register(Register::Status);
if (status & SR_Error)
{
u8 error = m_channel->read_register(Register::Error);
(void)error;
}
}
}