Luna/kernel/src/thread/Scheduler.cpp
apio 7b4cfd52cd
All checks were successful
continuous-integration/drone/push Build is passing
Scheduler: Don't search threads spawned before the current thread to find children
Children will always be spawned later (and thus have a higher PID) than their parent.
2023-04-28 15:19:01 +02:00

330 lines
8.7 KiB
C++

#include "thread/Scheduler.h"
#include "ELF.h"
#include "Log.h"
#include "arch/CPU.h"
#include "arch/MMU.h"
#include "memory/MemoryManager.h"
#include "thread/ThreadImage.h"
#include <luna/Alignment.h>
#include <luna/ScopeGuard.h>
#include <luna/Stack.h>
static Thread g_idle;
static Thread* g_current = nullptr;
static const usize TICKS_PER_TIMESLICE = 20;
namespace Scheduler
{
void init()
{
g_idle.id = 0;
g_idle.init_regs_kernel();
g_idle.set_ip((u64)CPU::idle_loop);
g_idle.state = ThreadState::Idle;
g_idle.is_kernel = true;
g_idle.parent_id = 0;
g_idle.name = "[idle]";
g_idle.ticks_left = 1;
// Map some stack for the idle task
u64 idle_stack_vm = MemoryManager::alloc_for_kernel(1, MMU::NoExecute | MMU::ReadWrite)
.expect_value("Error while setting up the idle task, cannot continue");
Stack idle_stack { idle_stack_vm, ARCH_PAGE_SIZE };
g_idle.set_sp(idle_stack.top());
g_idle.stack = idle_stack;
kinfoln("Created idle thread: id %lu with ip %#lx and sp %#lx", g_idle.id, g_idle.ip(), g_idle.sp());
g_current = &g_idle;
}
Thread* current()
{
return g_current;
}
Thread* idle()
{
return &g_idle;
}
Result<void> new_kernel_thread_impl(Thread* thread, const char* name)
{
// If anything fails, make sure to clean up.
auto guard = make_scope_guard([&] { delete thread; });
const u64 thread_stack_vm = TRY(MemoryManager::alloc_for_kernel(4, MMU::NoExecute | MMU::ReadWrite));
guard.deactivate();
const Stack thread_stack { thread_stack_vm, ARCH_PAGE_SIZE * 4 };
thread->set_sp(thread_stack.top());
thread->stack = thread_stack;
thread->parent_id = 0;
thread->name = name;
thread->is_kernel = true;
thread->auth = Credentials { .uid = 0, .euid = 0, .suid = 0, .gid = 0, .egid = 0, .sgid = 0 };
g_threads.append(thread);
thread->state = ThreadState::Runnable;
kinfoln("Created kernel thread: id %lu with ip %#lx and sp %#lx", thread->id, thread->ip(), thread->sp());
return {};
}
Result<void> new_kernel_thread(u64 address, const char* name)
{
Thread* const thread = TRY(new_thread());
thread->init_regs_kernel();
thread->set_ip(address);
return new_kernel_thread_impl(thread, name);
}
Result<void> new_kernel_thread(void (*func)(void), const char* name)
{
Thread* const thread = TRY(new_thread());
thread->init_regs_kernel();
thread->set_ip((u64)func);
return new_kernel_thread_impl(thread, name);
}
Result<void> new_kernel_thread(void (*func)(void*), void* arg, const char* name)
{
Thread* const thread = TRY(new_thread());
thread->init_regs_kernel();
thread->set_ip((u64)func);
thread->set_arguments((u64)arg, 0, 0, 0);
return new_kernel_thread_impl(thread, name);
}
Result<Thread*> new_userspace_thread(SharedPtr<VFS::Inode> inode, const char* name)
{
Thread* const thread = TRY(make<Thread>());
thread->state = ThreadState::None;
thread->is_kernel = false;
thread->id = 1;
thread->name = name;
thread->parent_id = 0;
thread->auth = Credentials { .uid = 0, .euid = 0, .suid = 0, .gid = 0, .egid = 0, .sgid = 0 };
Vector<String> args;
auto name_string = TRY(String::from_cstring(name));
TRY(args.try_append(move(name_string)));
Vector<String> env;
auto guard = make_scope_guard([&] { delete thread; });
auto image = TRY(ThreadImage::try_load_from_elf(inode));
u64 argv = TRY(image->push_string_vector_on_stack(args));
u64 envp = TRY(image->push_string_vector_on_stack(env));
guard.deactivate();
image->apply(thread);
thread->set_arguments(args.size(), argv, env.size(), envp);
kinfoln("Created userspace thread: id %lu with ip %#.16lx and sp %#.16lx (ksp %#lx)", thread->id, thread->ip(),
thread->sp(), thread->kernel_stack.top());
g_threads.append(thread);
return thread;
}
void add_thread(Thread* thread)
{
g_threads.append(thread);
}
void reap_thread(Thread* thread)
{
CPU::disable_interrupts();
kinfoln("reap: reaping thread with id %zu", thread->id);
if (thread->is_kernel)
{
auto stack = thread->stack;
MemoryManager::unmap_owned_and_free_vm(stack.bottom(), stack.bytes() / ARCH_PAGE_SIZE).release_value();
}
else
{
auto stack = thread->kernel_stack;
MemoryManager::unmap_owned_and_free_vm(stack.bottom(), stack.bytes() / ARCH_PAGE_SIZE).release_value();
}
if (!thread->is_kernel) MMU::delete_userspace_page_directory(thread->directory);
delete thread;
CPU::enable_interrupts();
}
Thread* pick_task()
{
Thread* old = g_current;
if (old->is_idle())
{
auto maybe_last = g_threads.last();
if (!maybe_last.has_value()) // No threads!!
return &g_idle;
g_current = old = maybe_last.value();
}
bool has_found_thread = false;
do {
auto maybe_next = g_threads.next(g_current);
if (!maybe_next.has_value()) g_current = g_threads.expect_first();
else
g_current = maybe_next.value();
if (g_current->state == ThreadState::Runnable)
{
has_found_thread = true;
break;
}
} while (g_current != old);
if (!has_found_thread) g_current = &g_idle;
return g_current;
}
void generic_switch_context(Thread* old_thread, Thread* new_thread, Registers* regs)
{
if (old_thread != new_thread)
{
switch_context(old_thread, new_thread, regs);
if (!old_thread->is_kernel) old_thread->fp_data.save();
if (!new_thread->is_kernel)
{
MMU::switch_page_directory(new_thread->directory);
CPU::switch_kernel_stack(new_thread->kernel_stack.top());
new_thread->fp_data.restore();
}
}
if (new_thread->is_idle())
{
new_thread->ticks_left = 1; // The idle task only runs for 1 tick so we can check for new runnable tasks
// as fast as possible.
}
else
new_thread->ticks_left = TICKS_PER_TIMESLICE;
}
void switch_task(Registers* regs)
{
Thread* old_thread = g_current;
Thread* new_thread = pick_task();
generic_switch_context(old_thread, new_thread, regs);
}
void invoke(Registers* regs)
{
CPU::disable_interrupts();
g_current->ticks++;
if (is_in_kernel(regs)) g_current->ticks_in_kernel++;
else
g_current->ticks_in_user++;
g_current->ticks_left--;
for (auto* const thread : g_threads)
{
if (thread->state == ThreadState::Sleeping)
{
if (--thread->sleep_ticks_left == 0) thread->state = ThreadState::Runnable;
}
}
if (!g_current->ticks_left) switch_task(regs);
}
LinkedList<Thread> check_for_dying_threads()
{
LinkedList<Thread> result;
g_threads.delayed_for_each([&](Thread* thread) {
if (thread->state == ThreadState::Dying)
{
g_threads.remove(thread);
result.append(thread);
}
});
return result;
}
Option<Thread*> find_by_pid(pid_t pid)
{
for (auto* const thread : g_threads)
{
if (thread->id == (u64)pid && thread->state != ThreadState::Dying) return thread;
}
return {};
}
bool has_children(Thread* thread)
{
bool result { false };
for_each_child(thread, [&](Thread*) {
result = true;
return false;
});
return result;
}
Option<Thread*> find_exited_child(Thread* thread)
{
Option<Thread*> result;
for_each_child(thread, [&](Thread* child) {
if (!result.has_value() && child->state == ThreadState::Exited)
{
result = child;
return false;
}
return true;
});
return result;
}
}
void kernel_sleep(u64 ms)
{
g_current->sleep_ticks_left = ms;
g_current->state = ThreadState::Sleeping;
kernel_yield();
}
[[noreturn]] void kernel_exit()
{
g_current->state = ThreadState::Dying;
kernel_yield();
unreachable();
}